

VERSION 3

DigiTool to Aleph Metadata

Synchronization

Last Update: June 2012
Document Version 3.0
Code: D-ver3-DTL2ALEPHSync-1.1

 2

CONFIDENTIAL INFORMATION

The information herein is the property of Ex Libris Ltd. or its affiliates and any

misuse or abuse will result in economic loss. DO NOT COPY UNLESS YOU HAVE

BEEN GIVEN SPECIFIC WRITTEN AUTHORIZATION FROM EX LIBRIS LTD.

This document is provided for limited and restricted purposes in accordance with a

binding contract with Ex Libris Ltd. or an affiliate. The information herein includes

trade secrets and is confidential.

DISCLAIMER

The information in this document will be subject to periodic change and updating.

Please confirm that you have the most current documentation. There are no

warranties of any kind, express or implied, provided in this documentation, other than

those expressly agreed upon in the applicable Ex Libris contract.

Any references in this document to non-Ex Libris Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this Ex Libris

product and Ex Libris has no liability for materials on those Web sites.

Copyright Ex Libris Limited, 2012. All rights reserved.

Documentation produced November 2010

Document version 3.0

Web address: http://www.exlibrisgroup.com

http://www.exlibrisgroup.com/

 3

TABLE OF CONTENTS

1 SCOPE AND PURPOSE .. 4

2 ABOUT THE WORKFLOWS ... 4

3 DIGITOOL TO ALEPH SETUP ... 6

3.1 DIGITOOL .. 6
3.1.1 REPOSITORY REPLICATION .. 6
3.1.2 REPOSITORY OAI ACCESSIBILITY.. 7
3.2 ALEPH .. 8
3.2.1 GETTING STARTED .. 8
3.2.2 $DATA_TAB/TAB_UE13.CONF (CONFIGURE ALEPH OAI HARVESTER) 8
3.2.3 $DATA_TAB/TAB_DC (DC TO MARC CONVERSION) ... 10
3.2.4 $DATA_TAB/TAB_FIX (CONVERSION OF METADATA) .. 10
3.2.5 $DATA_TAB/TAB_FIX_DC2USM (CONVERSION OF METADATA) 11
3.2.6 PARAMETERS FOR SERVICE ADAM-08 ... 12
3.2.7 TIMESTAMPS .. 13
3.2.8 STARTING/STOPPING UE_13 .. 13
3.2.9 TRACKING UE_13 AND P_ADAM_08 .. 14

4 ALEPH TO DIGITOOL ... 14

4.1 ALEPH .. 14
4.1.1 ALEPH OAI PROVIDING DATA ... 14
4.2 DIGITOOL .. 15
4.2.1 METADATA (REPOSITORY) SYNCHRONIZATION .. 15
4.2.2 TRACKING THE SYNCHRONIZATION... 22

5 ALEPH ENRICHMENT .. 24

 4

1 Scope and Purpose

The DigiTool metadata synchronization service provides a way to synchronize certain

types of metadata from DigiTool to Aleph and from Aleph to DigiTool. The Aleph

catalog is often the master catalog for object-related metadata. The matching is done

by an identifier within the metadata, for example, in MARC the control field 001. The

content of this field is matched between DigiTool and Aleph records. Using OAI

harvesting/providing, DigiTool sends new metadata records to Aleph to be maintained

and cataloged further. DigiTool keeps existing Aleph records updated by providing

persistent links back to the delivery system for objects that share the metadata in

DigiTool.

Data is passed back and forth from both systems by leveraging the OAI-PMH

capabilities of both systems.

2 About the workflows

Figure 1: DigiTool - Aleph Synchronization

Two typical workflows of the DigiTool-Aleph synchronization are as follows:

 5

Scenario #1

1. An object (for example, a book) is cataloged in Aleph, scanned, and digitized.

2. The scanned object(s) (that is, file streams) are ingested into the DigiTool

repository. During the ingest process, the object gets a set of “basic” descriptive

metadata, including a pre-defined field wherein the identifier of the Aleph

metadata is provided (for example, the 001 field). The content of the field is used

for matching between the data on the Aleph and DigiTool sides.

3. Once the objects have been loaded into DigiTool, a persistent link and PID are

associated with this file stream. Aleph needs to automatically record this delivery

link to make it accessible from the Aleph record/OPAC.

4. In order to achieve this, DigiTool defines a repository replication set which allows

writing out digital entities (records) from the DTL repository to the OAI_PUB

database table in DigiTool. The setup gives the opportunity to define which set or

population should be replicated and ultimately provided to Aleph.

5. The replicated set of digital entities is then defined as an accessible OAI set in the

relevant configuration table oaipubconf.xml under the dtle/tab/oai

directory for providing to Aleph.

6. Now the provided data can be harvested by Aleph using the service ue_13. The

data is taken to the Aleph system for update/addition/deletion of matching 001

field records.

7. The ue_13 (a background daemon) itself brings the data in to Aleph, then starts

the p_adam_08 service which converts the incoming metadata and matches

against Aleph library bibliographic records. In our scenario, the matching 001

field is our key. This key allows the persistent delivery link to populate the correct

Aleph record(s). It is stored in the Z403 table of the Aleph library.

8. Since Aleph contains the master catalog, DigiTool will need to benefit from the

full and most recent updates to the Aleph record as it continues to be cataloged. In

order to achieve this, DigiTool—this time the harvester—harvests the master

cataloged metadata from Aleph’s—now the OAI provider—available and

provided OAI data set.

9. This data is matched against the unique 001 identifier in DigiTool—and the Aleph

record merges/overrides the analogous DigiTool one—ensuring a synchronized

record in both systems.

10. The ongoing synchronization relies on periodic checks between DigiTool and

Aleph to see what changes, additions, and/or deletions have been made in both

systems. The OAI provider of both systems requests data by date range, and the

provided data within any date range is based on the last updated date of records in

both systems.

Scenario #2

1. Basic metadata is submitted with a digitized file stream(s) and is

deposited/ingested into DigiTool. For instance, a professor deposits a born-digital

thesis or e-Journal article and submits the basic metadata with file stream through

 6

the deposit workflow with some basic Dublin Core metadata—filled in using the

pre-defined deposit metadata form.

2. The record may need further cataloging and should ultimately be stored in the

master Aleph catalog, though it does not yet exist there.

3. DigiTool replicates and makes the data OAI-accessible to Aleph.

4. Aleph OAI harvester (ue_13) harvests the OAI data from DigiTool

5. Based on a field INS with content INSERT, Aleph knows that it must add a new

system number or bibliographic record with the basic metadata provided by

DigiTool. In this case, we may use a local field—that is, dc:ins with content =

INSERT—and map this field, once in Aleph, to a MARC INS field, which Aleph

recognizes. In other words, the metadata is provided in Dublin Core, and Aleph

converts it to the Aleph-native metadata format—usually MARC. This is

performed through an Aleph library-specific fix_routine. Additionally, while

adding the new Aleph record and “converted” MARC data, a persistent link is

provided which allows access from this new Aleph record to the DigiTool

delivery system in order to view the digital file stream from the Aleph OPAC.

6. Cataloging ensues on the Aleph side and the MARC record is now full and

complete.

7. DigiTool synchronization ensues: Aleph OAI provides the updated master

cataloged record back to DigiTool in the DigiTool stored format (in our case, DC,

the reverse of the above fix_routine) and merges/overrides the existing DigiTool

metadata record, ensuring a synchronized metadata record in both systems.

3 DigiTool to Aleph setup

The synchronization direction by which DigiTool provides data to Aleph requires

setup on the DigiTool side—that is, what to provide and how to provide it—and on

the Aleph side—that is, what to request from DigiTool and how.

3.1 DigiTool

3.1.1 Repository replication

DigiTool’s Repository Replication provides a way to replicate items from the

repository to the database table named OAI_PUB. In our case, Aleph expects a certain

format of replicated data in order to match and update data properly. The format is

based on an XSL stylesheet, de2aleph.xsl, which takes DigiTool records or digital

entities in a given set population and strips all unnecessary information so that only

basic control data, links, and descriptive metadata are retained—the data Aleph can

use.

For more information on creating repository replications, refer to the DigiTool

General Configuration Guide, Repository Replication and OAI section.

For our example, we will provide a sample Aleph-ready configuration for repository

replication.

 7

<replication name="dtlaleph" enable="true">

 <rs:set>

 <control_fields>

 <logical_operator logical_op="and">

 <field key="owner"

op="exact">DTL01</field>

 <field key="usagetype"

op="exact">VIEW</field>

 </logical_operator>

 </control_fields>

 <require_md name="descriptive" type="dc"/>

 <require_md name="descriptive" type="marc"/>

 <parent_only>true</parent_only>

<manifestation_leader_only>true</manifestation_leader_only>

 </rs:set>

<targets>

 <target type="class"

class_name="com.exlibris.digitool.repository.de.DigitalEntityO

AIReplicator">

 <params>

 <param name="db_url">dbc:oracle:thin:@myserver.

de:1521:dtl3</param>

 <param name="db_username">d31_oai01</param>

 <param name="db_password">d31_oai01</param>

 <param name="db_table_name">oai_pub</param>

 <param name="set_spec">dtlaleph</param>

 <param name="metadata_format">de2aleph</param>

 </params>

 <format_convertor type="xsl" convertor="de2aleph.xsl"/>

 </target>

</targets>

 <scheduling sync_on_startup="true"

type="every_x_hours" x="24"/>

 </replication>

3.1.2 Repository OAI accessibility

The appropriate data set is replicated to database table OAI_PUB and now needs to be

made OAI-accessible, allowing the synchronization service to pass data back and

forth by way of the OAI-PMH protocol (HTTP).

The following is an example of how this can be achieved:

<?xml version="1.0" encoding="UTF-8"?>

<oairoot>

<set>

<setSpec>oai</setSpec>

<setName>oai set</setName>

<setDescription>The default oai set</setDescription>

</set>

<set>

<setSpec>history</setSpec>

<setName>History</setName>

</set>

 8

<set>

<setSpec>dtl2aleph</setSpec>

<setName>dtl2aleph</setName>

</set>

<repositoryName>ExLibris Repository</repositoryName>

<adminEmail>Me@exlibris.co.il</adminEmail>

<description>

<oai-identifier

xmlns="http://www.openarchives.org/OAI/2.0/oai-identifier"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oaiide

ntifier

http://www.openarchives.org/OAI/2.0/oai-identifier.xsd">

<scheme>oai</scheme>

<delimiter>:</delimiter>

<sampleIdentifier>oai:il-dtldev02:52719</sampleIdentifier>

</oai-identifier>

</description>

</oairoot>

Once the OAI data is indexed, the data should be accessible to any OAI

requester/harvester—specifically Aleph’s.

3.2 Aleph

3.2.1 Getting Started

Perform the following steps to get started synchronizing Aleph with DigiTool.

1. Aleph license update—contact your local EXL representative

2. Aleph v 16 only—Add z403 table to the library or libraries needing

synchronization:

a) Add the following lines to $data_root/file_list:

TAB z403 4M 0K TS2D

IND z403_id 4M 0K TS2X

IND z403_id1 4M 0K TS2X

b) UTIL A 17 1 to create z403, z403_id and z403_id1

3. Add table tab_ue13.conf to $data_tab—not in version by default. (And any

tab_fix tables needed to map metadata—optional—and not in version by default.)

See sections below for more details.

3.2.2 $data_tab/tab_ue13.conf (configure Aleph OAI harvester)

The table is used to configure the Aleph OAI harvester (ue_13). The following

parameters have to be defined for ue_13—located in the Aleph library’s tab unit:

 9

!!

[Main]

BASE-URL = http://server:port/oai/provider

!Base URL of the (DigiTool) OAI provider.

DELETE-XML-FILES = N

!Options (Y/N) - Delete XML files from $alephe_scratch after

synchronizing the records.

DELETE-LOG-FILES = N

!Options (Y/N) - Delete log files from $alephe_scratch after

synchronizing the records.

METADATA-PREFIX = de

!Format which has been provided from DigiTool, for example, “de” for

digital entity format. The value is based on the defined format of

the set defined in the DigiTool OAI provider.

RECALL-PERIOD = 24h

!Value for the time period for every harvesting step (in minutes

unless otherwise specified – h = hours). It is a time range for each

OAI request – similar to the “Scope” parameter on the DigiTool side.

This parameter can contain two digits. This means that the maximum

amount of minutes possible is 99. For values larger than 99 minutes -

specify "h" (hours).

SERVICE-NAME = oairep.pl

!Perl script which is used by ue_13.

START-DATE = 2006-01-01-T00:00:00Z

!Time stamp (in UTC) for provided data. The records must have been

provided after this date.

!Syntax: YYYY-MM-DD-THH:MM:SSZ This parameter is only relevant for

the first run of the ue_13 and from then on will be run according to

the ue-13 last date and time.

TIMEOUT = 900

!Timeout value for ue_13 OAI harvester (in seconds).

WAIT-TIME = 216000

!Waiting time before checking for new records (in seconds). For

instance, 216000 seconds = 24 hours.

[Debug]

VERBOSE-MSG = 2

!The amount of information to be printed in the log files (1, 2)

[Sets]

DTLALEPH1 = dtlaleph

!Name of the DigiTool OAI set.

DTLALEPH1-RUN-01 = csh -f $aleph_proc/p_adam_08

USM01,<filename>,<setname>,,Y,Y,001,dc:DCUSM%marc:USUSM,

!Command to start service adam-08.

 10

3.2.3 $data_tab/tab_dc (DC to MARC conversion)

The tab_dc table is used for Dublin Core to MARC conversion—that is, when data

supplied from DigiTool is in Dublin Core and needs to be mapped into MARC in

Aleph.

The conversion of DC elements to Aleph categories is done in two steps. First, the DC

metadata are converted to Aleph sequential format. Second, Aleph sequential format

is converted to MARC 21 (or other Aleph metadata—that is, MAB, UNIMARC, and

so on).

Structure of the table:

Col. 1: Internal field code

Col. 2: Dublin Core Element

!1 2

!!!!!-!!!>

001 dc:title

002 dc:creator

003 dc:subject

004 dc:description

005 dc:publisher

006 dc:contributor

007 dc:date

008 dc:identifier

009 dc:source

010 dc:language

011 dc:relation

012 dc:coverage

013 dc:rights

014 dc:type

015 dc:format

016 dc:ins

017 dc:alephsync

020 dcterms:alternative

021 dcterms:abstract

022 dcterms:tableOfContents

023 dcterms:spatial

024 dcterms:temporal

025 dcterms:extent

026 dcterms:medium

027 dcterms:available

028 dcterms:issued

029 dcterms:modified

030 dcterms:created

The internal field codes are referenced in tab_fix_dc2usm (or other tab_fix

tables) which is used for conversion from DC to MARC 21-format (conversion step

2) or other internal Aleph metadata formats.

3.2.4 $data_tab/tab_fix (conversion of metadata)

The following entries should be defined in $data_tab/tab_fix if conversion of

records from/to MARC/DC XML format or to other metadata formats (MAB,

UNIMARC) are needed:

 11

! 1 2 3

!!!!!-!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!-!!!!!!!!!!!!!!!!!!!!!!!!!!!!!>

USMDC fix_doc_convit FILE=tab_fix_usm2dc

DCUSM fix_doc_convit FILE=tab_fix_dc2usm

USMUS fix_doc_convit FILE=tab_fix_usm2marcxml

USUSM fix_doc_convit FILE=tab_fix_marcxml2usm

Structure of the table:

Col. 1: Fix routine name

USMDC = Name of the fix routine to convert MARC-XML to Aleph-DC

DCUSM = Name of the fix routine to convert DC-XML to Aleph-MARC

USMUS = Name of the fix routine to convert Aleph-MARC to MARC-XML

USUSM = Name of the fix routine to convert MARC-XML to Aleph-MARC

Col. 2: Fix program name

fix_doc_convit is the program used.

Col. 3: Program arguments

FILE= Configuration table name

Name of tab_fix table which should exist in $data_tab of the library.

NOTE: In addition to fix_doc_convit, all programs which are defined for fix

routine INS are used while loading new Aleph records from DigiTool.

If using Scenario #2 (e.g. Field INS with content INSERT) $data_tab/tab_fix in

the BIB library should contain the fix program fix_doc_001 in the INS section.

This is to ensure a 001 field is created when the record is harvested.

3.2.5 $data_tab/tab_fix_dc2usm (conversion of metadata)

The table tab_fix_dc2mab contains rules for the conversion of internal field code

into Aleph-MAB categories (conversion step 2). This description is valid for any

configuration table which may be used together with fix_doc_convit.

Structure of the table:

Col. 1: Source Tag and Indicator

Col. 2: Source Subfield

Col. 3: Target Tag and Indicator

Col. 4: Target Subfield

Col. 5: Program Name with Arguments

! 1 2 3 4 5

 12

!!!!!-!-!!!!!-!-!!>

LDR const_field "00000^a^^^22^^^^^^^^4500",ONCE-IDN=01

FMT const_field "CF",ONCE-IDN=02

017## a 001

001## a 245 a

016## a INS a

 Make sure that entries for Aleph categories INS and 001 exist in the table. Field

INS is used as a flag to identify records that do not have a corresponding Aleph

record in order to create a new bibliographic record.

NOTE: By default, usm2us and us2usm will map all tags “as they are” to and from

MARCXML <-> Aleph-MARC with no changes—that is, 245 a to 245 a. Use the

tab_fix tables only if non-default mapping is needed.

3.2.6 Parameters for service adam-08

The Aleph OAI harvester (ue_13) transfers data which have been provided from

DigiTool OAI provider to the Aleph directory $alephe_scratch.

The file name is ue_13_<date>.<seq.number>_<setname>.

ue_13 automatically activates Aleph service adam-08. This service is used to

convert and load the records which have been harvested from DigiTool. adam-08 is

limited to loading/syncing objects which have Usage Type VIEW and their

corresponding metadata provided in MARC 21 or Dublin Core XML format.

adam-08 identifies the corresponding Aleph bibliographic records using a unique

identifier (for instance, controlfield/001). Z403 records associated with Aleph

bibliographic records are identified and updated if the DigiTool PID matches the entry

in field z403_note_5 (version 18+: z403_pid).

If no matching 001 is found, Aleph looks for an INS field with content = INSERT.

This is Aleph’s signal to create a new bibliographic record. Alternatively, a deleted

record in DigiTool needs to have the delivery link from Z403 deleted in Aleph.

Records that are indicated as deleted in the data adam-08 receives from DigiTool are

deleted according to PID – which is stored in Z403 for already synchronized records.

If no matches are made for update/addition/deletion, the record is skipped and adam-

08 moves onto the next one.

Use the following command and parameters to run adam_08. Definitions for

parameters follow (in the table below).

csh -f $aleph_proc/p_adam_08 <BIB library>,<input file>,<oai set

name>,<report file name>,<create thumbnail>,<create index>,<unique

identifier>,<fix procedure>,<cataloger name>,<cataloger level>

Parameter Definition

Input File Name of the input file which contains the digital entities provided

from DigiTool. The input file must be under $alephe_scratch.

OAI Set Name Name of the DigiTool OAI Set which includes the digital entities

 13

Parameter Definition

to be loaded.

Report File

Name

Name of the report file which will be created during the process,

with information about the BIB records that have been updated.

Default: <p_input_file>.doc_log

Create

Thumbnail

Select if thumbnails should be created during the process. Relevant

only if ADAM is fully licensed.

Create Index Select if Full Text index files should be created during the process.

Relevant only if ADAM is fully licensed.

Unique

Identifier

Category of the bibliographic record which contains the unique

identifier (must be 001).

Fix procedure Definition of the fix procedure that is used for the conversion of

the input data into Aleph-MARC (or MAB, UNIMARC (see

above).

Syntax: <format>:<fix_code>%<format>:<fix_code>

format = format of the input data (can be "dc" or "marc")

fix_code = name of the fix routine from $data_tab/tab_fix, col.1

% = "or"

Example: dc:DCUSM%marc:USUSM

Cataloger Name If the username of the cataloger is entered in this field, a CAT field

containing the cataloger name is added to all records updated by

the batch (either old or newly created). If the cataloger name is left

blank, the CAT field will be created anyway, but it will contain only

subfields $c (date), $l (active library), and $h (hour). If the

cataloger name is set to "NO-CAT", CAT fields will NOT be added

to the records updated or added.

Cataloger Level This field can be used to determine the cataloger level that is

recorded in the CAT field added to a record which has been updated

or added.

3.2.7 Timestamps

Timestamps are counters in Oracle table Z52 (UTIL G/2):

ue13-last-date - end date of last harvesting, YYYMMDD

ue13-last-time - end time of last harvesting, HHMMSS

ue13-run-date - date of last start of ue_13

ue13-run-no - number of ue_13 starts

Last date and time will be used as parameters for the next harvesting. If re-harvest

needs to start in the past, ue13-last-date and ue13-last-time can be set to the

appropriate values. ue_13 must be re-started to activate any new parameters.

3.2.8 Starting/Stopping ue_13

Once the above is setup, ue_13 is ready to begin running. ue_13 is a background

daemon in each library and is run by using the libraries UTIL E menu.

To start ue_13—UTIL e 13

 14

To stop ue_13—UTIL e 14

3.2.9 Tracking ue_13 and p_adam_08

The ue_13 harvester log file is located in the $data_scratch directory of the Aleph

library. It tracks both the harvesting of ue_13 as well as the execution and result of

p-adam-08. The log file follows the syntax:

run_e_13.<timestamp>

The harvested data—brought in from DigiTool by the ue_13 service—is located in

the $alephe_scratch directory and follows the syntax:
ue_13_<datestamp>.<seq.number>_<setname>_001.tmp

4 Aleph to DigiTool

The synchronization direction by which Aleph provides data to DigiTool requires

setup on the DigiTool side (in terms of how to request and accept data) and on the

Aleph side (in terms of how and what to provide to DigiTool).

4.1 Aleph

4.1.1 Aleph OAI providing data

Publishing-based Aleph OAI Data Provider exposes data prepared by the Aleph

Publishing process. Refer to the Aleph Publishing documentation for more

information about Publishing.

Aleph provides updated metadata to DigiTool by way of the OAI PMH protocol.

The Aleph OAI provider is configured under ./alephe/tab/oai/oaipubconf.xml

The sets defined can be physical libraries (that is, USM01) or can be logical bases as

defined in tab_base (for instance USM01-ART). Assuming the physical library in

Aleph contains more records than are meant for synchronization with DigiTool, we

recommend limiting the OAI providing set meant for DigiTool to a logical set.

Here is a sample OAI setup:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE oaiconf SYSTEM "oaiconf.dtd">

<oairoot>

<set>

 <setSpec>USM01-ART</setSpec>

 <setName>Art Images in DT</setName>

 <internalSet>USM01ARTD:oai_dc</internalSet>

 <internalSet>USM01ARTM:marc21</internalSet>

</set>

<repositoryName>Our Repository Name</repositoryName>

<baseURL>http://domain.server.com:8881/OAI</baseURL>

<adminEmail>ouremail@ourinstitution.com</adminEmail>

 15

<description>

 <oai-identifier

 xmlns="http://www.openarchives.org/OAI/2.0/oai-identifier"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai-

identifier

 http://www.openarchives.org/OAI/2.0/oai-identifier.xsd">

 <scheme>oai</scheme>

<repositoryIdentifier>domain.server.com</repositoryIdentifier>

 <delimiter>:</delimiter>

 <sampleIdentifier>oai:domain.server.com:USM01-

000000001</sampleIdentifier>

 </oai-identifier>

</description>

</oairoot>

Follow any change to oaipubconf.xml with a re-start of the www server to activate.

You can access the OAI ListRecords for this set at your institution’s Aleph OAI

providing URL. For instance:
http://domain.server.com:8881/OAI?verb=ListRecords&metadataPrefix=marc21&set

=USM01-ART

The OAI provider in Aleph allows requests to be made by date and time ranges based

on the last updated date of the metadata records that make up any given set.

For instance, if record number 000001234 in Aleph has its MARC record updated on

October 19, 2006 at 13:40, the following date range request should return that and any

other matching updated records for the period.
http://domain.server.com:8881/OAI?verb=ListRecords&metadataPrefix=mar

c21&from=2006-10-19T00:00:00Z&until=2006-10-20T00:00:00Z&set=USM01-

ART

DigiTool sends requests on a periodic basis to Aleph in order to sync up with the

master catalog.

The format Aleph provides OAI data in may be in MARC 21 or in Dublin Core –

depending on the preference for metadata storage on the DigiTool side.

4.2 DigiTool

4.2.1 Metadata (repository) synchronization

The repository synchronization provides one way for DigiTool to harvest metadata

from an external OAI provider like Aleph for metadata enrichment/update of

DigiTool objects. The relevant configuration file is located under

./home/profile/synchronisations/conf/repository_synchronisation.xml

Since the preferred matching identifier field within the metadata has to be indexed in

DigiTool in order for the sync service to function, it may be necessary to adjust the

http://domain.server.com:8881/OAI?verb=ListRecords&metadataPrefix=marc21&set=USM01-ART
http://domain.server.com:8881/OAI?verb=ListRecords&metadataPrefix=marc21&set=USM01-ART
http://domain.server.com:8881/OAI?verb=ListRecords&metadataPrefix=marc21&from=2006-10-19T00:00:00Z&until=2006-10-20T00:00:00Z&set=USM01-ART
http://domain.server.com:8881/OAI?verb=ListRecords&metadataPrefix=marc21&from=2006-10-19T00:00:00Z&until=2006-10-20T00:00:00Z&set=USM01-ART
http://domain.server.com:8881/OAI?verb=ListRecords&metadataPrefix=marc21&from=2006-10-19T00:00:00Z&until=2006-10-20T00:00:00Z&set=USM01-ART

 16

repository_indexing_schema.xml file with the appropriate metadata indexing

definitions—not, however, with the digital entity indexing definitions stored in the

same file.

NOTE: It is possible for the customer to add customer-specific synchronizations,

including customer specific services as long as they are compliant with the basic

outline of the synchronization and OAI standard.

4.2.1.1 Configuring the synchronization

The relevant setup for this functionality has to be performed under

./home/profile/synchronizations/conf. The file

repository_synchronization.xml is used to control the functionality. This file is

divided into several sections, where each tag <synchronization> defines a

separate OAI providing target to be queried and brought into DigiTool.

The following shows a sample configuration:

<?xml version="1.0" encoding="UTF-8"?>

<rs:synchronisations

xmlns:rs="http://www.exlibrisgroup.com/xsd/digitool/repository/synchronisation">

 <synchronisation name="dtlaleph" enable="true">

 <sources>

 <source name="aleph"

class="com.exlibris.digitool.infrastructure.sync.SyncOAIAdapter">

 <params>

 <param

name="parser_class_name">com.exlibris.digitool.infrastructure.oai.OAIMARCSaxPars

er</param>

 <param name="repository_name">OAI</param>

 <param

name="base_url">http://domain.server.com:8881</param>

 <param name="metadata_prefix">marc21</param>

 <param name="from">2006-06-22T00:00:00Z</param>

<!--

 <param name="until">2006-06-22T00:00:00Z</param>

-->

 <param name="set">USM01</param>

 <param name="scope">1440</param>

 <param name="max_record_number">1000</param>

 </params>

 </source>

 </sources>

 <services>

 <service name="MaintenanceTool"

class="com.exlibris.digitool.repository.jobs.SyncMaintenanceTool">

 <params>

 <param name="job_name">Metadata Update</param>

 <param name="unit">DTL01</param>

 <param name="procToRun">update</param>

 <param name="recordType">marc</param>

 <param

name="recordIdentifier">/controlfield/001</param>

 <param

name="mergeRules">md_merge_rules.xml</param>

 <param name="isSA">true</param>

 17

 </params>

 </service> </service> </service>

 </services>

 <scheduling sync_on_startup="true" type="every_x_hours" x="24"/>

 </synchronisation>

</rs:synchronisations>

The configuration of the above parameters will now be described in more depth.

4.2.1.2 Defining the external target source for synchronization

Every instance of <synchronization/> has two attributes: the name of this

synchronization and the enabled attribute—either true or false.

To activate a synchronization, the enabled attribute must be set to true.

The source section holds the target information for the OAI-Request to the external

OAI provider (Aleph) system. This source element has two attributes: the name of

the source and the connected java-class that runs the harvest of the metadata. The

parameter section comes after the source element. The <params> element holds

several sub-elements named <param>. Each <param> element has an attribute

“name” which stores a defined value.

NOTE: The configuration file is read upon startup of the DigiTool server. Any

changes to this file will only take effect after restart.

The following parameters can be configured:

 parser_class_name: a java-class to parse the metadata.

Sample:
<param name="parser_class_name">

com.exlibris.digitool.infrastructure.oai.OAIMARCSaxParser

</param>

 repository_name: name of the target repository OAI program

Sample – for Aleph:
<param name="repository_name">OAI</param>

 base_url: the URL and port of the source from which the data should be

harvested – in many cases, Aleph.

Sample:
<param name="base_url">http://domain.server.com:8881</param>

 metadata_prefix: the metadata type in which the incoming metadata is

described – OAI-PMH standard (marc21/oai_dc).

Sample:
<param name="metadata_prefix">marc21</param>

 from: start date and start time for looking up OAI provided metadata updates –

in UTC. The definition here is only active, if no valid timestamp file under

 18

j_home/profile/synchgronisationa/timestamps exists – usually the

first run only.

Sample:
<param name="from">2007-06-22T00:00:00Z</param>

 until: end date and end time. This optional parameter allows a synchronization

to be run within a defined range of time - UTC. Otherwise this parameter

should be commented out and each run will be based on the “Scope”

definition.

Sample:
<param name="until">2007-06-22T00:00:00Z</param>

 set: name of the source set. According to the OAI-PMH standard.

For Aleph, the value here is according to the value given in the setspec-

element of the oaipubconf.xml (the configuration file for OAI data

provider setup on the Aleph side).

Sample:
<param name="set">USM01-ART</param>

 scope: defines the range of time to search the OAI provider with each

successive sync run. It essentially becomes the “until” date and time for each

run = timestamp or initial from date + scope time. The value is set in minutes.

Sample (24 hours in minutes = 1440):
<param name="scope">1440</param>

 max_record_number: defines the maximum number of records on which one

single run should be limited. If there are more records than allowed

Sample:
<param name="max_record_number">1000</param>

4.2.1.3 How to set up the service – updating DigiTool metadata

For each synchronization, one or more services can be configured. Each service

element has two attributes: name is the name of the service and class is the called

java-class for the procedure. The services are used for defining the further processing

of the harvested data. The following parameters are configurable:

 job_name: name of the job which should run on the metadata.

Sample:
<param name="job_name">Metadata Update</param>

 unit: the administrative unit in DigiTool to which the object and the relevant

metadata to be updated belongs to:

Sample:
<param name="unit">DTL01</param>

For any unit:
<param name="unit">ALL_UNITS</param>

 19

 identifier: the identifier field in the DigiTool stored metadata used to match

against the harvested metadata. This may be any field, even a user-defined

one.

Samples:

<param name="identifier">/controlfield/001</param>

<param name="identifier">dc:alephsyncid</param>

 procToRun: The procedure to run for the data brought in – possible options:

1. update – that is, only updates based on matching identifiers found both

in the data brought in and the data in the DT repository.

2. new – that is, updates will occur like in #1, but in addition, any record

brought in from the external source which doesn’t have a matching

identifier will be added to the DigiTool system as a new MID

(metadata identifier). Any added MIDs can be used in the DigiTool

system and associated with objects PIDs already in the system or to be

loaded in the system in the future.

 mdName: the descriptive name of the metadata stored in DigiTool for example,

marc, dc

Sample:
<param name="mdName">marc</param>

 mergeRules: Optional setting for specific fields that should be saved or

deleted from the original metadata record in DigiTool or in the metadata

brought in from the external source. Default is to override the metadata in

DigiTool with the entire master record being pulled in. The template(s) for

md_merge_rules.xml are stored under

./home/profile/conf/templates/metadata/.

Sample:
<param name="mergeRules">md_merge_rules.xml</param>

Here is a sample md_merge_rules.xml definition:

<?xml version="1.0" encoding="UTF-8"?>

<mr:md_merge_rules

xmlns:mr="http://com/exlibris/digitool/common/formatting/xmlbeans">

 <fields>

 <field action="delete">

 <location type="md" md_name="descriptive" md_type="marc"

path="MID/#/#/a"/>

 <location type="md" md_name="descriptive" md_type="dc"

path="//dc:mid[not(@*)]"/>

 </field>

 <field action="insert" force="false">

 <location type="md" md_name="descriptive" md_type="marc"

path="leader"/>

 <location type="md" md_name="descriptive" md_type="marc"

path="245/#/#/a"/>

 <location type="md" md_name="descriptive" md_type="dc"

path="//dc:title[not(@*)]"/>

 </field>

 20

 </fields>

</mr:md_merge_rules>

The above md_merge_rules.xml definition will delete the fields MID in any

incoming MARC record and dc:mid in any incoming dc record.

NOTE: Deletion of the leader (action=delete) is not supported for the leader field.

The md_merge_rules.xml configuration file is located under the

./home/profile/conf/templates/metadata/ directory.

Here are some examples of correct syntax necessary to address different kinds of

fields within a <field> section in the md_merge_rules.xml:

Example: MARC leader field

 <location type="md" md_name="descriptive" md_type="marc"

path="leader"/>

Example: standard MARC field

 <location type="md" md_name="descriptive" md_type="marc"

path="245/#/#/a"/>

Example: MARC Controlfield

 <location type="md" md_name="descriptive" md_type="marc"

path="/controlfield/008

 "/>

Example: Dublin Core field – type: element without Encoding Scheme

 <location type="md" md_name="descriptive" md_type="dc"

path="//dc:title[not(@*)]"/>

Example: Dublin Core field – type: element with Encoding Scheme

 <location type="md" md_name="descriptive" md_type="dc"

path="//dc:subject[@xsi:type='dcterms:LCSH']” / >

The available actions are:

 delete - detach records from input record.

 insert - maintain tags from the DigiTool record to add them to the input record.

The update is matched either on the record identifier or the MID (in the case of the

first Aleph back-sync to DigiTool—that is, no record identifier yet exists, but rather

only MID).

 21

NOTE: When the tag already exists in the input record:

- With force option set to false, no insert will be performed.

- With force option set to true, the DigiTool tag will be added to the input record.

To enhance the performance of the metadata update job, the job is performed outside

JOBSS by setting this parameter:
<param name="isSA">true</param>

The scheduling of the sync is defined in the following line:
<scheduling sync_on_startup="true" type="every_x_hours"

x="24"/>

Available types are:

 Hours’ interval – put “every_x_hours” for the “type” attribute, the value of the “x”

attribute will define how many hours between synchronizations.

In the following example, synchronize every 48 hours:

<scheduling type="every_x_hours" x="48"/>

 Minutes’ interval – the value of “type” is “every_x_minutes” and the value of “x”

is the number of minutes between synchronizations.

In the following example, synchronize every 30 minutes:

<scheduling type="every_x_minutes" x="30"/>

 Certain time daily – Configure the exact hour on which the replication will run

every day. “x” for the hour, “y” for the minutes.

In the following example, synchronize every day at 2:30 am.

<scheduling type="every_day_at_x_and_y" x="2" y="30"/>

NOTES

The scheduling intervals are relative to the DigiTool server startup time.

Avoid using small intervals except in cases of very small synchronizations. If you can

identify the most idle hours of the day of the server, use the specific-hour-scheduling

for those times.

The service can run automatically using the configuration information or can be

started manually via the “/mng” management module – Maintenance jobs – Metadata

Update.

4.2.1.4 Running the Metadata update manually

Generally, this service runs as part of the synchronization itself and does not need to

be run manually.

However, the update of DigiTool metadata can be performed using the maintenance

job—Metadata Update—rather than or in addition to the automatic definitions in

repository_synchronisation. The parameters are identical to those that can be

defined in the repository_synchronisation.xml file, but instead, the parameters

 22

here are defined in the standard repository_jobs_configuration.xml file – in

j_conf.

The input file is the name or full path of a metadata xml file that has been harvested

into the “files” directory under ./home/profile/synchronisations/.

4.2.2 Tracking the synchronization

4.2.2.1 Logs

Repository synchronization logs can be found under

./home/profile/synchronisations/logs.

The general log, called “manager.log”, is created on startup and gives information

on the synchronization scheduling, general information and general initialization

errors.

The detailed synchronization log (created for each synchronization run) is a dedicated

log following this naming convention:

<synch-name>_<schedule-id>.log.<log-id>.

<synch-name> is the value of the “name” attribute in the “synchronization” tag.

<schedule-id> is the id of the scheduling for the synchronization

<log-id> is an incremental number that indicates the index of the file for the same

log.

The logs give information about phases the synchronization process is in, number of

files added/updated in each phase, time it took for each phase to complete and any

errors that may have occurred while running.

4.2.2.2 Timestamps

Every time the synchronization starts, it looks for a timestamp file in the

<synchronization_home>/timestamps directory. This timestamp represent the

last exact time the synchronization was run, and it is used to check for changes since

that time. When it finishes synchronizing, it updates the timestamp file. If there is no

timestamp file found, the date and time defined in the

repository_synchronisation.xml in the parameter “from” under the source

element is taken as the new initial timestamp.

You might want, for example, to run a new synchronization, but you are not interested

in objects from last year. Entering a timestamp file before starting the server (with

content such as 2006-01-01 00:00:00) will allow this to occur.

Alternatively, if you would like to start over, removing all timestamp files will begin

the synchronization from the initial setting in the configuration file.

 23

The relevant timestamp can easily be found by its name, which is the synchronization

name with the “timestamp” extension, for example, synchTest.timestamp.

4.2.2.3 Files

The files directory holds the metadata xml files which are harvested from the external

OAI provider. For each synchronization run (which retrieves data) a file with all

metadata sets is created.

The naming convention is as follows:
<sync_source_name>_0_<yyyymmdd.hhmmss>_0.xml

These files are taken as input for the process defined by the service-section in

repository_synchronisation.xml. The input will be the name of the xml file

holding the harvested metadata – and will be checked against existing repository

indexed data in order to update matching records with this harvested metadata.

4.2.2.4 Run

The run folder holds the basic parameters which were defined in the

repository_synchronisation.xml file – denoting how to update DigiTool objects

with the contents of the harvested metadata files. It is created automatically and does

not need to be configured.

4.2.2.5 Configuring the repository indexing schema

For the functionality of the synchronization, the identifier field chosen for matching

between systems has to be indexed in the repository_indexing_schema.xml under

the ./system/conf directory. This has to take place under the relevant metadata

indexing section for Dublin Core or MARC—not the Digital Entity indexing section.

For example, using MARC controlfield 001 defined under the Marc metadata index

section:

<field index_enabled="true" search_enabled="true" ui_code="210"

ui_default_text="001"

index_code="4010" normalizing_profiles_ref="generic">

 <field_path>/controlfield/001</field_path>

 </field>

Using a local field, 988 subfield a (MARC):

<field index_enabled="true" search_enabled="true" ui_code="210"

ui_default_text="SysId" index_code="4010"

normalizing_profiles_ref="generic">

<field_path>988/#/#/a</field_path>

</field>

The value for the index_enabled and search_enabled attribute has to be true. The

ui_code and index_code is consecutively numbered. The ui_default_text is the

displayed text in the repository metadata search (should not contain spaces). The field

which should be indexed has to be defined in the <field_path> tag.

http://dict.leo.org/ende?lp=ende&p=/gQPU.&search=consecutively
http://dict.leo.org/ende?lp=ende&p=/gQPU.&search=numbered

 24

NOTE: Re-loading repository configuration is necessary for activating any changes.

Additionally, for already existing repository data, re-indexing metadata may be

necessary if the field being used for identifying/matching is not indexed.

The new indexed field should be displayed in the management module in the

repository metadata search when the relevant descriptive metadata is chosen. If you

search by your preferred “sync” field under the Metadata search and do not find

results, neither will the metadata synchronization services. Ensure the index is defined

properly, re-loaded (or re-start to JBOSS) and data re-indexed.

5 Aleph Enrichment

An additional possibility for updating records in DigiTool with Aleph metadata

updates, but not on a synchronized schedule, is using the maintenance job “Aleph

enrichment.” Aleph enrichment works differently from the synchronization service in

that it currently supports only MARC metadata—and expects that the matching

identifier will be the controlfield 001. Additionally, updates by date range are not

requested from Aleph, but rather, DigiTool gets a set of PIDs to update in DigiTool,

reads the metadata and finds any 001 fields present in the metadata and sends

individual OAI requests—GetRecord and NOT ListRecords—for those particular 001

fields. The 001 fields are expected to be equal to the record number in Aleph.

The Aleph enrichment service is less sophisticated than the synchronization service

but is also easier to track and set up. If there are not many updates expected in Aleph,

the enrichment service may be a preferable option over the synchronization “Metadata

Update” service for bringing in the Aleph master catalogued records into DigiTool.

5.1.1.1 Running Aleph enrichment

You can run Aleph enrichment from the maintenance jobs in the “mng” module.

The parameters require you to choose a set of PIDs by filling in the job form. Specific

parameters for this service are:

 25

Data Source: Data source defines which Aleph server to request records from by way

of the X-Server find-doc function. The possible data sources are defined in
global.properties:

aleph.server=domain.server.com

aleph.port=8882

aleph.base=usm01

They are used in repository_configuration.xml.tmpl:
 <data_sources>

 <data_source transport_protocol="x-server">

 <id>1</id>

 <name>Aleph Source</name>

 <adapter_class/>

 <data_source_parameters>

 <data_source_parameter name="url">

http://@@aleph.server@@:@@aleph.port@@/X?op=find-do

c&base=@@aleph.base@@

 </data_source_parameter>

 </data_source_parameters>

 </data_source>

 </data_sources>

After running set_globals.sh in repository_configuration.xml, they

appear as follows:
 <data_sources>

 <data_source transport_protocol="x-server">

 <id>1</id>

 <name>Aleph Source</name>

 <adapter_class/>

 <data_source_parameters>

 <data_source_parameter name="url">

http://domain.server.com:8881/X?op=find-do

c&base=usm01

 </data_source_parameter>

 </data_source_parameters>

 </data_source>

 </data_sources>

Save Tags: Similar to md_merge_rules in the metadata update/sychnronization

service, but only involves keeping metadata fields in the MARC record stored in

DigiTool prior to running the enrichment service. For instance, choosing 245/#/#/a

in Save Tags will keep the DigiTool 245a tag, but the rest of the metadata record

from Aleph—if 001 matches—will be brought in to override the DigiTool record.

	Table of Contents
	1 Scope and Purpose
	2 About the workflows
	3 DigiTool to Aleph setup
	3.1 DigiTool
	3.1.1 Repository replication
	3.1.2 Repository OAI accessibility

	3.2 Aleph
	3.2.1 Getting Started
	3.2.2 $data_tab/tab_ue13.conf (configure Aleph OAI harvester)
	3.2.3 $data_tab/tab_dc (DC to MARC conversion)
	3.2.4 $data_tab/tab_fix (conversion of metadata)
	3.2.5 $data_tab/tab_fix_dc2usm (conversion of metadata)
	3.2.6 Parameters for service adam-08
	3.2.7 Timestamps
	3.2.8 Starting/Stopping ue_13
	3.2.9 Tracking ue_13 and p_adam_08

	4 Aleph to DigiTool
	4.1 Aleph
	4.1.1 Aleph OAI providing data

	4.2 DigiTool
	4.2.1 Metadata (repository) synchronization
	4.2.1.1 Configuring the synchronization
	4.2.1.2 Defining the external target source for synchronization
	4.2.1.3 How to set up the service – updating DigiTool metadata
	4.2.1.4 Running the Metadata update manually

	4.2.2 Tracking the synchronization
	4.2.2.1 Logs
	4.2.2.2 Timestamps
	4.2.2.3 Files
	4.2.2.4 Run
	4.2.2.5 Configuring the repository indexing schema

	5 Aleph Enrichment
	5.1.1.1 Running Aleph enrichment

