[image: image1.png]ExLibris
Aleph

ALEPH Version 20.01
How to run index jobs
[image: image2.png]N
EXLID”S The bridge to knowledge

Last Update: March 26, 2012
Document Version 1.1
Code: A-ver20-IND-1.0

CONFIDENTIAL INFORMATION

The information herein is the property of Ex Libris Ltd. or its affiliates and any misuse or abuse will result in economic loss. DO NOT COPY UNLESS YOU HAVE BEEN GIVEN SPECIFIC WRITTEN AUTHORIZATION FROM EX LIBRIS LTD.
This document is provided for limited and restricted purposes in accordance with a binding contract with Ex Libris Ltd. or an affiliate. The information herein includes trade secrets and is confidential.
DISCLAIMER
The information in this document will be subject to periodic change and updating. Please confirm that you have the most current documentation. There are no warranties of any kind, express or implied, provided in this documentation, other than those expressly agreed upon in the applicable Ex Libris contract.
Any references in this document to non-Ex Libris Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this Ex Libris product and Ex Libris has no liability for materials on those Web sites.
Copyright Ex Libris Limited, 2009. All rights reserved.
Documentation produced October 2009.
Document version 1.1
Web address: http://www.exlibrisgroup.com
51. Introduction

72. Which Jobs to Run When: Sequences & Dependencies

72.1 p_manage_05, _07, _27, _12

72.2 p_manage_01

72.3 p_manage_02 and Associated Jobs

82.3.1 Main Headings jobs

92.3.2 Other Headings jobs

112.4 Union indexing jobs (p_union_01, _02, etc.)

122.5 Typical job sequences for each library

12Typical job sequence for BIB library:

12Typical job sequence for AUThority library:

13Typical job sequence for ADM library:

13Typical job sequence for HOL library:

13Typical job sequence for Course Reading library:

143. Turning Off Archive Logging

154. Processes and Cycle Size

15How Many Processes?

16What Cycle Size?

175. Disk Space and File Locations

185.1 Work Space Example for Words (p_manage_01)

185.2 Oracle Table Space Examples for Words

195.3 Oracle Table Space Examples for Z01

195.4 Moving $TMPDIR, $data_scratch, and $data_files

216. Preparation for Index Jobs

21Clean temp/scratch directories

21Check Oracle space

21Cancel jobs which might interfere.

227. Unlocking the Library While the Job Is Running

23For version 17:

23For version 18 and 19:

248. Monitoring the Jobs

24p_manage_01

25p_manage_02

25p_manage_05

25p_manage_07

26p_manage_12

27p_manage_17

27p_manage_27

28p_manage_32

28p_manage_102

29p_union_02

29UE_08

309. Troubleshooting

30Job is Stuck

31“File Not Found”

31Sort Errors

32Restart

32Restart of p_manage_01_e

33Restart of p_manage_01_a

34Restart of p_manage_02

36Job is Slow

37Specific Error Messages

37Problems using/searching indexes

3810. Estimating Run Time

10.1 University of Minnesota Parallel Indexing Stats, March 2012 42
4Appendix A: Sample Commands for Running Jobs from Command Line

3
4Appendix B. How Many Processors Do You Have?

5
4Appendix D. Adjacency

6
4Appendix E. Stopping/Killing Jobs

7
4Appendix F. Diagnosing Success/Failure of Indexing Jobs

9
41. Diagnosing the “Exiting due to job suspension” (In General)

9
52. Diagnosing when there’s no “Exiting due to job suspension” message

3
53. Other Diagnosis:

5
53a. p_manage_17

5

1. Introduction

This document describes how to run index jobs such as Words and Headings. It touches upon such issues as turning off archive logging, number of processes, disk space and file locations, unlocking the library while a job is running, monitoring the jobs, troubleshooting, and estimation of the run time.

This document applies to versions 18, 19, 20, and 21. It can be found in the Ex Libris Documentation Center > Aleph > Support > How To from Support by subject > Indexing_filing_and_expand_procedures folder on the Doc Portal.
For easy reference, here is a list of the batch utilities and daemons mentioned in this document:

· p_manage_01 = Rebuild Word Index
· p_manage_02 = Update Headings Index
· p_manage_05 = Update Direct Index

· p_manage_07 = Update Short Bibliographic Records

· p_manage_12 = Update Links Between Records

· p_manage_15 = Delete Unlinked Headings

· p_manage_16 = Alphabetize Headings

· p_manage_17 = Alphabetize Long Headings

· p_manage_27 = Update Sort Index

· p_manage_32 = Build Counters for Logical Bases
· p_manage_35 = Update Brief Records
· p_manage_102 = Pre-enrich Bibliographic Headings Based on the Authority Database
· p_manage_103 = Trigger Z07 Records
· p_manage_105 = Update Untraced References
· p_union_01 = Build Empty Equivalencies Records
· p_union_02 = Populate Equivalencies Records

· UE_01 = indexing daemon

· UE_08 = cross-referencing daemon

The jobs are submitted through the Services menu of the GUI Cataloging module. The jobs can also be submitted by entering a csh command at the unix prompt. See Appendix A for sample scripts to use for running the job from the command line.

A related document, “Parallel Indexing”, is available on the Doc Portal in Ex Libris Documentation Center > Aleph > Technical Documentation > How To > Indexing folder.

2. Which Jobs to Run When: Sequences & Dependencies

In general, you run index jobs because

a) You have batch-loaded records (without selecting the “full indexing” option),

b) You have made table changes and want the fields in existing records to be indexed differently, or
c) There is a problem with the index which needs to be corrected.

2.1 p_manage_05, _07, _27, _12

The p_manage_01, p_manage_05, p_manage_07, and p_manage_27 procedures are “base” jobs; in other words, they are not dependent on any other jobs. They can be run in any order you wish.

The p_manage_12 utility is also independent, but the links it creates are required by the other jobs. Generally, you should not need to run p_manage_12. See section 2.4, Note 1, below, for more information.

In 16.02-up, a RECORD-TYPE parameter is added to the p_manage_07 job:

 0 = both z13 and z00r; 1 = z13 only; 2 = z00r only.

Note: the TAB100 “CREATE-Z00R” option must be set to “Y” for options 0 or 2 to function.

2.2 p_manage_01

p_manage_01 reads the ./alephe/aleph_start “setenv ADJACENCY_TYPE” parameter. The three possible values are

 “0” (No adjacency),

 “1” (3-letter pairs) and

 “2” (full-word pairs).

In 15.2-up, you should always specify ADJACENCY_TYPE 2.

2.3 p_manage_02 and Associated Jobs

Note: The Headings are basically usable immediately after the p_manage_02 is run. If the availability of the Headings is a consideration, consider running other steps with the online up or postponing until the next evening or weekend.

2.3.1 Main Headings jobs

 If you have an authority library and this is a complete run (indexing all the records), you should run p_manage_102 before running p_manage_02.

· p_manage_102 copies the headings from authority records into the BIB file Z01. This makes the long, complete run of UE_08, which matches headings with authority records, unnecessary. Only the run of manage_102 for the first authority library should specify “1” ("Delete existing headings"). Runs for the second, third, etc., authority library, and the run of manage_02, should specify “0” ("Keep existing headings") (so the previous headings you've copied into the Z01 aren't deleted). If you have just a single authority library (xxx10), then you would do just a single run of p_manage_102, in “Delete existing headings” mode (“1”).

You need to prevent Z07 records from being processed between the p_manage_102 run and the p_manage_02 run which follows it. You can do this:

(1) by verifying (with select count(*) from z07;) that there are no Z07s waiting; or

(2) by stopping ue_01 as described in Section 7 of this document, so that ue_01 is stopped between the time that p_manage_102 ends and p_manage_02 begins.

· p_manage_02

If p_manage_02 is preceded by p_manage_102, then you should run p_manage_02 with:

· "Procedure to run" = Update headings index ("0")

· “Insert –CHK- in New Headings” submission parameter set to “Yes”

If p_manage_02 is not preceded by p_manage_102, then you should run p_manage_02 with:

· "Procedure to run" = Rebuild entire headings index ("1")

· “Insert –CHK- in New Headings” submission parameter set to “No”

 “Run in Duplicate Mode” should always be “No”. This does not work.
If you need to re-run p_manage_02 and if the original run of p_manage_02 was preceded by p_manage_102, then the re-run of p_manage_02 must also be preceded by p_manage_102. (Otherwise you will end up with duplicate z02 records.)

· p_manage_17 Alphabetize long headings. p_manage_17 is multi-process.

p_manage_17 does not lock the library.

The jobs should be run in the above order. But other, non-headings, jobs can come in between: If you like, you could run p_manage_02, then p_manage_07, and so on. p_manage_17 though, cannot be run before p_manage_02….

Also, p_manage_32 and/or p_manage_35 could come before p_manage_17, if you prefer. It’s just that all of these must follow p_manage_02.

2.3.2 Other Headings jobs

p_manage_32: Run if you have small bases specified in tab_base. (Running manage_32 for large bases can result in huge Z0102 Oracle tables. Use util h/1/10 to check if your tab_base setup is reasonable. A lightly-used base of less than 5% or a heavily-used base of less than 15% are candidates.
p_manage_32 could come before p_manage_17, if you prefer. It’s just that all of these must follow p_manage_02.

p_manage_32 locks the library.

· p_manage_105 (optional): Add “untraced references” from authority records to the bib Z01 Headings index. {The second, third,etc., time the job is run it will delete all the existing untraced references (z01_ref_type = ‘U’) and then re-add them from scratch.}. Since untraced references are not expanded through the UE_08 process, new headings in the authority database are imported into the bibliographic headings list as untraced references only by running this batch process. It should be run following any run of p_manage_02. And whenever there are a number of untraced references which need to be added. It is run from the *authority* library. See the GUI Cataloging Services Help for more information. This job needs to be run after the bib library p_manage_02.

· p_manage_35 (optional): Build subarranging index (Z0101) for the Z01 Headings index. Large catalogs and those with many music headings are most likely to benefit from the subarranging index. See the GUI Cataloging Services Help for p_manage_35 for more information. Also, the document "Brief Records Functionality" (in Ex Libris Documentation Center > Aleph > Technical Documentation > How To > Web OPAC on the Doc Portal) has a very good and complete description of the function of the z0101. . This job needs to be run after p_manage_02 but can be run before or after p_manage_17, p_manage_32, or p_manage_105.

The following three Headings jobs are not run as part of the normal sequence:

· p_manage_103: Create Z07s for headings which are candidates for correction. It would only be run when the bib headings are not already synchronized with the authority headings. That is, when the bib headings have not had authority work done on them and a file of possibly matching authority records has been loaded. And when there are authority records with a UPD value of “Y”. (If all authority records have UPD “N”, then no updates would be made anyway.) Also: it would only be run if p_manage_02 has been preceded by p_manage_102. (Otherwise there wouldn’t be any Z01s with authority links to process.)

· p_manage_15: Deletes headings which don't have any titles (Z02 records) associated with them and which aren’t linked to authority records.

Note: This job does not delete untraced references. {p_manage_105 (see above) handles those.} There have been problems with this job deleting “xyz” subject headings which it should not.

· p_manage_16: Re-sorts the existing Z01 headings in accordance with the current tab00.lng and tab_filing. It can be run in two modes: report mode or update mode. Update mode actually updates the Z01-FILING-TEXT and Z01-FILING-SEQUENCE. The job does *not* need to be run as part of the manage_02 sequence. You would run it only when changes have been made to the filing procedures specified in tab00. lng, to tab_filing, or to the alephe/unicode/unicode_to_filing... character equivalents table, when changes have *not* been made to the tab11_acc entries, and when you don’t want to bother with the complete run of p_manage_102 and p_manage_02.
UE_08 (if you have authority records)

Ue_08 would be run in the bib library after you have run p_manage_02 for both the bib library and for any associated authority libraries. (ue_08 looks at the Z01/Headings in the authority library in trying to find matching headings.)

If you are running p_manage_32, then see the preceding entry for p_manage_32 in regard to its relation to ue_08.

Regardless of whether the p_manage_02 has been preceded by a run of p_manage_102, the ue_08 should be started in “C” mode (“Continuous check of new headings”). We strongly recommend that you precede p_manage_02 by a run of p_manage_102 (see section 2.3 above) and that you NOT do a complete run of ue_08.

The only case where you would do an “R”-mode (“Re-check previously unmatched headings”) run of ue_08 is when a change to tab_aut or tab20 requires that headings which were previously set to “-CHK-“ be rechecked.

The only case where you might need to do an “N” mode (“Re-check all headings as if they were new”) run of ue_08 is when a change to tab_aut or tab20 requires that headings which are currently linked to an authority record be unlinked / linked to a different authority record.

In version 17-up, the writing of z07’s is always required – since the updating of the z0102 has shifted from ue_08 to the ue_01_z0102 process (started by ue_01).

A complete ue_08 will write millions of unnecessary z07s (index update requests). You may try deleting these but we strongly recommend that you precede p_manage_02 by a run of p_manage_102 and that you not do a complete run of ue_08 (that is, that you not specify “N” in submitting ue_08) after running p_manage_02.
If you want to know how many “-NEW-“ headings are waiting to be processed by ue_08, the following SQL will tell you:

 SQL> select count(*) from z01 where substr (z01_rec_key_4,1,5) = ‘-NEW-‘;

2.4 Union indexing jobs (p_union_01, _02, etc.)

p_union_01, p_union_02, create_z127, and load_z127_to_mem are really one job: they are always run together.

The p_union_01 job builds empty equivalencies records (Z120) for each bibliographic record; the p_union_02 populates the equivalencies table; create_z127 / load_z127_to_mem create/load the z127. Each record in the Union Catalog has its own equivalencies record, and all equivalent records share the same preferred record.

In a Union Catalog there's an xxx90 union library into which bib records from various other libraries are loaded. There are no item or holdings records connected to the xxx90 bib records. In the Union View there are multiple bib records in the xxx01 bib library with connected items/holdings for each title. You should consult the How to Set Up an ALEPH Union Catalog or How to Set Up and Configure Union View for Your OPAC documents in the Documentation Center for proper set-up.

p_union_02 must be preceded by p_manage_01 and p_manage_05 since it uses the tables built by those jobs in doing its matching and selection of a preferred record.

2.5 Typical job sequences for each library

Note 1: The z103 should be present before any index jobs are run for a library. p_manage_12 generates the z103. The z103 is normally built as part of conversion/upgrade and should not normally need to be run. When p_manage_12 is re-run for one library (BIB, ADM, HOL, or Course Reserve) it must be run for all of them. The BIB should be run first. See the GUI Cataloging Services p_manage_12 Help for additional information. If you aren’t sure whether the z103 has been built, do this SQL:

 SQL> select count(*) from z103;

If this count is less than the number of doc records in this library, then p_manage_103 probably needs to be run. But contact Ex Libris Support before doing so.

For MAB Customers: Before creating the Z103 (running p_manage_12) it is necessary to create the direct index entries (p_manage_05) because for MAB the relevant link field is field 001 and the field has to be indexed first

Note 2: See Appendix A for sample scripts to use for running the job from the command line.

Typical job sequence for BIB library:

p_manage_05

p_manage_01

p_manage_07

p_manage_27

Headings:

 p_manage_102 must precede p_manage_02

 p_manage_02

 p_manage_17 must follow p_manage_02; doesn’t lock library

 p_manage_32 (optional, see above) must follow p_manage_02

 p_manage_35 (optional, see above) must follow p_manage_02

 p_manage_02 in any associated authority library (before starting ue_08 in bib
 library)

 ue_08 with mode “C” in bib library
Special jobs: p_manage_103, p_manage_12 (see Note 1, above), p_union_01/p_union_02.

Typical job sequence for AUThority library:

p_manage_05

p_manage_02 {with "Procedure to run" = Rebuild entire ("1")}

p_manage_07

p_manage_27

p_manage_01

p_manage_17 must follow p_manage_02; doesn’t lock library

p_manage_105 must follow bib library p_manage_02

Special jobs: p_manage_12 (if you have set up relationships in the authority library ..tab/tab07).

Typical job sequence for ADM library:

p_acq_04 (Order index)

p_cir_25 (to create z353 patron index records) (16.02-up, only)

p_manage_111 (for users, vendors, budgets, and reading room)

Special jobs: p_manage_12** (see Note 1, above).

Typical job sequence for HOL library:

 p_manage_12 (see Note 1, above).

Typical job sequence for Course Reading library:

p_manage_05

p_manage_02* {with "Procedure to run" = Rebuild entire ("1")}

p_manage_17* <may not be necessary, if few long headings>

p_manage_01

p_manage_07

p_manage_27

Special jobs: p_manage_12**

** The p_manage_12 for the ADM library writes Z103s to the Course Reading (xxx30) library’s Z103 table. These need to be preserved: either by running xxx30 p_manage_12 before the xxx50 p_manage_12 or by running p_manage_12 in the xxx30 with “Delete all links” = N.
 You should not need to routinely run p_manage_12.

3. Turning Off Archive Logging

[Note: Sites with relatively small databases (fewer than 300,000 titles) which can be processed in an overnight window need not bother with this section. Leave archive logging as is.]

Oracle archive logging can add 25-50% to the time required for a job to run. But since the running of an index job with archive logging off would normally require a complete, cold Oracle backup both before and after the job, the circumstances in which this is a good strategy are pretty limited. Generally, the only jobs which might even be candidates are the p_manage_01 and p_manage_02.

If you are running several big jobs at the same time, it may be justified.

Certainly during the original data conversion and indexing and during upgrade to a new version, you will want to have archive logging turned off.

For further information, please consult the document, “ALEPH Batch Jobs and Oracle Archive Logging”.

4. Processes and Cycle Size

[Note: Sites with relatively small databases (fewer than 300,000 titles) which can be processed in an overnight window need not bother with this section. Just specify "4" processes.]

How Many Processes?

With the exception of p_manage_105 (which is single-process), the index jobs let you specify multiple processes. This lets the job make use of more of your computer’s processing capacity. If you specify “5”, 5 different processes will be started, each doing different sections of the file.

In version 18-up, the maximum number of processes is 500.

Each process requires its own sort space. It is possible that there could be sufficient sort space for the job when run with 8 processes, but that it fails when run with 16 processes. See the “Disk Space and File Locations” section immediately following.

Though it might seem strange, you may specify a number of processes greater than your number of processors. (This has to do with how the ALEPH processing is done.) (If you don't know how many processors you have, see Appendix B. Note that with GNU/Linux, you usually have “quad cores” so you would multiply the processors by 4 to get an accurate indication of the processors.)
In regard to the p_manage_01 or p_manage_02 jobs where multi-threaded extraction steps are followed by single-threaded steps, having too many (extraction) processes running at the same time will cause the extraction step to "run ahead" --at the expense of the subsequent single-treaded steps. For such jobs, when a fast sort such as gsort is being used, 8 processes will usually keep the extraction step in balance with the following steps.
· In the case where the multi-threaded p_manage_01_a extraction processes have "run ahead" of the single-threaded p_manage_01_c, p_manage_01_d, and p_manage_01_d1 processes, you will find, in the $data_scratch directory, after the job has completed, that the last p_manage_01_a_n.log has a timestamp 15, 30, or 60 minutes earlier than the final p_manage_01_c.log timestamp. In this case you want to reduce the number of p_manage_01 processes in any subsequent runs of the job.

· If, on the other hand, you find that just two or five minutes separate the timestamp of the last p_manage_01_a_n.log and the final p_manage_01_d1 timestamp, that's an indication that the number of p_manage_01 processes can and should be increased. Another indication: if you find, as the job is running, that the plus signs in column 1 of the cycles file are not running ahead of the other columns -- that is, the other processing is keeping up with the extraction --, then you may want to increase the number of processes in subsequent runs in order to get maximum performance.

. For jobs other than p_manage_01 and p_manage_02 --where there is no long single-threaded process following the extraction-- having at least twice the number of processors works best.

· if you have 4 processors, you might have 8 processes;

· if you have 8 processors, you might have 16 processes.

Note: If you are doing parallel indexing, with other system activities occurring during the indexing, then you will probably need to specify fewer processes than described above to keep the indexing job(s) from overwhelming the other activities.

What Cycle Size?

· If you have the space (see the next section, "Disk Space ...") and want to make the job run faster instead of increasing the number of processes you should increase the "cycle size". The cycle size is specified in the xxx01/prof_library loop_length parameters.
The following are our general recommendations.

Number of records Cycle size
Less than 100,000
20000*

More than 100,000
50000**

* If the number of records is fewer than 100,000, then a cycle size of ¼ the number of records will be optimal. But with relatively few records the job will run fairly quickly and take relatively little space even with a larger cycle size –as long as the cycle size isn’t too *low*: you should never have a cycle size like 1000….

 The cycle_size (p_manage_nn_loop_length) should NOT be greater than 50000. (The programs are unable to handle the larger-than-2-gig files which such a setting typically generates.)

** Two sites have found that the use of an p_manage_02_loop_length of 100000 generated a “file too large” error in p_manage_02 and one site found that it generated the same error in p_manage_102. That’s why we lowered our recommendation to 50000.

 With the p_manage_01_loop_length (for Words indexing), three sites got an error with 50000. When the length was reduced to 40000, the job ran successfully.

5. Disk Space and File Locations

[Note: Sites with relatively small databases (fewer than 300,000 titles) which can be processed in an overnight window should just make sure that the xxx01 $data_scratch, the xxx01 $data_files, and the $TMPDIR directories are cleaned up before running p_manage_01 or _02 and need not otherwise be concerned with this section.]

Most indexing jobs do not require any great amount of work space, but the p_manage_02 and, especially, the p_manage_01, do.

The sort space ($TMPDIR space) required is a function of the number of processes specified and the “cycle size” which, in turn, depends on the p_manage_01_loop_length (for manage_01) and p_manage_02_loop_length (for manage_02), specified in the xxxnn/prof_library file. (The greater the number of processes and the larger the loop_length, the more $TMPDIR space required –but the faster the job runs –see “Estimating Run Time”, section 10, below.).

The $data_scratch space is a function of the number of document-words/document-headings (how many documents there are and how many fields in each are indexed) and the ADJACENCY setting (see section 13 / Appendix D). And, to a lesser extent, the cycle size and the number of processes. (See preceding section 4.)

The peak use of $data_scratch space by indexing jobs normally occurs in the p_manage_01_e step of the p_manage_01 job. With typical MARC bibliographic records (averaging about 1K per record), a typical number of Word indexes (100) and an appropriate loop_length (see “What cycle size?” in preceding section), the $data_scratch will vary from 10K per doc record to 20K per doc record.

Reducing the number of processes can result in a slight reduction in the space required in the $data_scratch. As noted above, it can result in a great reduction in $TMPDIR space.

The location of $data_scratch and $data_files is specified in the ../xxxnn/prof_library and can be temporarily changed, if necessary. (See the “Moving $TMPDIR, $data_scratch, and $data_files” section immediately below.)

If you are not using a RAID array (with a single file system, with its own internal distribution mechanism), it is highly desirable from a performance standpoint for each of these to be in a different file system. (We suggest that you temporarily move the directory in order to achieve this.) The most important concern is that the $TMPDIR

be in a different file system than the others. (See the “Moving $TMPDIR, $data_scratch, and $data_files” section immediately below.)

If archive logging is on (see Section 3, above), you need to make sure that your archive log is big enough to accommodate the large number of log records which will be written. See section 7, “Checking Oracle Space”, below.

In addition, if you have added fields/indexes to tab11_word or tab11_acc since the last run of the p_manage_01 or p_manage_02 jobs, consider the possibility that the Oracle tables, which the job produces, may need to have their extents increased or the disk(s) they write to may need to be increased.

5.1 Work Space Example for Words (p_manage_01)

The p_manage_01 ran successfully for 1.7 million BIB records, with 176 Word indexes, with "setenv ADJACENCY 2", with 7 processes, with p_manage_01_loop_length 50000, with:

32 gig. $data_scratch free

20 gig. $TMPDIR free (probably only 15 gig was used?)

10 gig. $data_files free (probably only 5 gig was used?) ,

taking 36 hours. Note: in version 18-up, p_manage_01 is about twice as fast.
p_manage_01 run-time under AIX : The sort routine being used can greatly affect the time p_manage_01 takes. The standard IBM/AIX sort is particularly slow. We have found that by substituting the gsort the total run-time can be cut by 5-10 hours. Contact Ex Libris Customer Support if you have questions.

5.2 Oracle Table Space Examples for Words

Here are three examples of how much space the z9n Oracle tables are using at three different 14.2 sites:

 Site X

 Site D**

Site B**

 14.2 14.2

 16.02

 3.6 million bibs
1.7 million bibs
2.3 million bibs

 276 Word indexes
 176 Word indexes
36 Word indexes

Z97

6 gig

3.2 gig

1.2 gig

Z97_ID
2.8 gig

1.5 gig

700 meg

Z97_ID1
2.8 gig

1.5 gig

500 meg

Z97_ID2
760 meg

390 meg

450 meg

Z97_ID3
716 meg

370 meg

410 meg

Z95 24 gig

7.5 gig

19 gig

Z95ID 200 meg

50 meg

140 meg

Z98

13 gig

3.1 gig

9.5 gig

Z98_ID
5 gig

1.2 gig

3.8 gig

** Same sites are D and B in Section 10 “Estimating Run Time”.

5.3 Oracle Table Space Examples for Z01

Site D** Site B**

Z01

5 gig

11 gig

Z01_ID

2 gig

Z01_ID2

400 meg

730 meg

Z01_ID3

800 meg

1.5 gig

Z01_ID4

600 meg

1.2 gig

Z01_ID5

400 meg

480 meg

Z02

1.2 gig

Z02_ID

1 gig

Z02_ID1

800 meg

5.4 Moving $TMPDIR, $data_scratch, and $data_files

· To move $TMPDIR: Create a new directory and then change the $TMPDIR entry in ../alephe/aleph_start. Example: Define a /aleph15/tmp/ directory and then change:

setenv TMPDIR ${ALEPH_MOUNT}/a${ALEPH_VERSION}_$ALEPH_COPY/tmp

to:

setenv TMPDIR /aleph20/tmp

Note: After changing aleph_start, since TMPDIR is used by various servers, daemons, and batch jobs, you need to run aleph_shutdown and aleph_startup to make the change take effect.

If the change to the location of $TMPDIR is intended to be permanent, then you will also need to change the symbolic link in the ./alephe/apache/htdocs directory. As delivered we have:

tmp@ -> /tmp/

Following the above example this might be changed to:

tmp@ -> /aleph15/tmp

· To move data_scratch: Create a new file and then change the $data_scratch entry in ../xxxnn/prof_library. Example: Define a /aleph2/xxx01_scratch and then change:

setenv data_scratch $xxx01_dev/xxx01/scratch

 setenv data_scratch /aleph2/xxx01_scratch

And create a symbolic link to the new data_scratch (first make sure there’s nothing you want in the old scratch):

aleph-M525=XXX01>>rm -R scratch

aleph-M525=XXX01>>ln -s /aleph2/xxx01_scratch scratch

· To move data_files: {NOTE: The space required in $data_files is much smaller (1/3rd the space required of $TMPDIR and 1/5th the space of $data_scratch. Normally you would not need to move this.} Create a new file and then change the $data_files entry in ../xxxnn/prof_library. Example: Define a /aleph2/xxx01_files and then change:

setenv data_files $xxx01_dev/xxx01/files

 setenv data_files /aleph2/xxx01_files

And create a symbolic link to the new data_files (first make sure there’s nothing you want in the old files):

aleph-M525=XXX01>>rm -R files

aleph-M525=XXX01>>ln -s /aleph2/xxx01_files files

6. Preparation for Index Jobs

When p_manage_01 (and, to a lesser extent, p_manage_02) are run against large databases, they can require a great deal of space and run for a long time. You should:

Clean temp/scratch directories

Make sure that the xxx01 $data_scratch, the xxx01 $data_files, and the $TMPDIR directories are cleaned of any extraneous, temporary files. If you think, based on calculations in the preceding disk space section, that the disks the $data_scratch, $data_files, or $TMPDIR reside on may not have enough space, consider moving them temporarily to a different space.

Check Oracle space

You can use util a/17/11 (Check space utilization of Oracle tables) to make sure that the relevant files (z95/z97/z98 for Words, z01/z02 for Headings, and z11 for Direct index) are not near their maximum number of extents or maximum tablespace sizes. If they are, the extent sizes specified in the xxx01/file_list should be increased prior to running the job or the tablespace(s) should be increased.

Also, make sure that you don't have unnecessary archive logs. These will be in the "/arch" directory. If you see files there which are more than several weeks old and if you do regular complete backups, then you may not be compressing or deleting these files as you should be. Once you have a complete backup, the archive logs which pre-date that backup are no longer useful. To delete, compress, or move the files you will need to log on as the Oracle user ("su - oracle"). (Or you can su to root with the root password, then su to oracle.)

 The archive logs are only used for forward recovery from the point of the last complete backup.

Cancel jobs which might interfere.

The manage_nn index jobs may need to run when backup jobs or other jobs normally run. You need to make sure that jobs which would interfere with the index job are canceled. The mechanisms for automatic running are the ALEPH job daemon and the Unix cron. The ALEPH job daemon can be stopped via util e/15/2 or individual jobs can be commented out via util e/16. Consult your Unix systems administrator in regard to cron jobs which might interfere.

7. Unlocking the Library While the Job Is Running

[Note: Sites with relatively small databases (fewer than 300,000 titles) which can be processed in an overnight window should just leave the library locked (in those cases where the job locks it) -- and not worry about this section.]

· UE_08 does not lock the library and does not interfere with normal use of the system (except, perhaps, slowing things down slightly).

· p_manage_17 does not lock the library, but depending on how many processes it is running with, it may affect the performance of your production www_server, pc_server, etc.

· p_manage_12 does not lock the library but it really should: when you specify DELETE=YES, the OPAC becomes unusable because you do not have the links to the items and HOLdings, that is, no locations and no call numbers. Please see Section 2.4, Note 1, and contact Ex Libris Support before running p_manage_12.

· p_manage_01, 02, 05, 07, 27, 32, 35, and 102 all lock the library. Generally, the best rule is to leave the library locked while these jobs are running. Most of these jobs run quickly enough to fit in an overnight window. But you can unlock the library if you perform the steps described below.

At some sites the index jobs run for a long time (see the “Job Run Time Estimates” section below) and you may need to unlock the library. This can be done if you make sure that no online index updates are performed. How do you do this? You may think that making sure that no one is doing Cataloging is enough, but you also need to consider the Fast Cat function in Circulation and the possibility that there is a backlog of Z07 updates (produced, for instance, by UE_08) waiting to be processed. Basically, you need to make sure that the UE_01 indexing daemon is not running. (Note that when you unlock the library, the UE_01 process is restarted immediately and automatically!)

For version 18-up:

util w/5 (“View/Update Global System status”) has been added:

 Global System Status

 Process Name Status

 ----------------------------- -----------------------------

 1. SYSTEM UP

 2. WWW-SERVER UP

 3. ACQ UP

 4. CIRC UP

 5. CAT UP

 6. ILL UP

 7. JOBD UP

 8. QUEUE-BATCH UP

 9. ALL-UE UP

 10. UE-01 UP

 11. UE-03 UP

 12. UE-06 UP

 13. UE-08 UP

 14. UE-11 UP

 15. UE-13 UP

You can toggle #10 (UE-01) to “DOWN” before submitting the indexing job. Then, once the indexing job is done, you would toggle it back to “UP”.
Note that this stops the ue_01 process in all libraries and it would need to be restarted for all libraries once the job is done.
8. Monitoring the Jobs

After you submit the job you may want to verify that it is still running and to check its progress. This is done differently depending on the job.

p_manage_01

The Oracle files involved are:

doc - the document table which is being indexed (in the case of a BIB library, this is the
BIB file)

Z970 - word synonyms (optional)

Z97 - word dictionary

Z98 - bitmap

Z980 - cache of bitmap updates (not written to by manage_01; updated online only)

Z95 - words in document

(Section 5, above, discusses the disk space required for manage_01 work files and also includes an example of the space occupied by these Oracle tables.)

The “central” log file for the job is xxxnn_p_manage_01.nnnnn. If the job is submitted through the GUI Cataloging Services, this log is in the alephe/scratch directory.

There are six steps to the job:

1. (when "Rebuild entire") build z97 records from z970 synonym records (optional)
2. p_manage_01_a: read doc records, extract words

3. p_manage_01_b: sort words

4. p_manage_01_c: build/write z97 record

5. p_manage_01_d: build/write z950 (or z95) record

6. p_manage_01_e: merge + build/write z98

These steps write work files and their own “sub-logs” (example: p_manage_01_a1.log) to the xxxnn/scratch directory. In addition, the p_manage_01_a step, which does parallel retrieval of the records from the input file, and the p_manage_01_e step, which does parallel merging and building of the z98, produce p_manage_01_a.cycles and p_manage_01_e.cycles files, respectively. These files have a column for each sub-step of the step and rows showing the different sections into which the input file has been divided for processing. The four columns in p_manage_01_a.cycles represent the _a, _c, _d, and _d1 steps, respectively. As a sub-step is performed for a particular section of the file, it is marked with a “+”. The final _e step cannot start until all of the a - d steps are completed.

Restart of this final step (should it fail) is described in the Troubleshooting (Section 9) heading “Restart of p_manage_01_e” below.

p_manage_02

The Oracle files involved are:

doc - the document table which is being indexed (in the case of a BIB library, this is the
 BIB file)

Z01 - headings file

Z02 - ACCDOC – which documents contain each heading

Z114 – Pinyin Chinese dictionary (optional)

The “central” log file for the job is xxxnn_p_manage_02.nnnnn (where “xxxnn” is the library). If the job is submitted through the GUI Cataloging Services, this log will be in the alephe/scratch directory.

There are four steps to the job: p_manage_02_a, _c, _d, and _d1.

These steps write work files and their own “sub-logs” (example: p_manage_02_a_1.log) to the xxxnn/scratch directory. In addition, the p_manage_02_a step, which does parallel retrieval of the records from the input file produces a p_manage_02.cycles file. This file has a column for each sub-step of the step and rows showing the different sections into which the input file has been divided for processing. As a sub-step is performed for a particular section of the file it is marked with a “+”.

p_manage_05

The Oracle files involved are:

doc - the document table which is being indexed (in the case of a BIB library, this is the
 BIB file)

Z11 - the direct index

The “central” log file for the job is xxxnn_p_manage_05.nnnnn (where “xxxnn” is the library). If the job is submitted through the GUI Cataloging Services, this log is in the alephe/scratch directory.

There are two steps to the job: p_manage_05_a and p_manage_05_c.

These steps write work files and their own “sub-logs” (example: p_manage_05_a_1.log) to the xxxnn/scratch directory. In addition, the p_manage_05_a step, which does parallel retrieval of the records from the input file produces a p_manage_05.cycles file. This file has a column for each sub-step of the job and rows showing the different sections into which the input file has been divided for processing. As a sub-step is performed for a particular section of the file it is marked with a “+”.

p_manage_07

The Oracle files involved are the

doc - the document table which is being indexed (in the case of a BIB library, this is the
 BIB file)

Z13 - short doc file

Z00R – bib record in SQL-searchable form

The central log file for the job is xxxnn_p_manage_07.nnnnn (where “xxxnn” is the library). If the job is submitted through the GUI Cataloging Services, this log is in the alephe/scratch directory.

There is one step to the job: p_manage_07_ a.

This job does not write any work files; it updates the Z13 file directly. The job writes a sub-log for each process to the xxxnn/scratch. In addition, there’s a p_manage_07.cycles file which shows the different sections into which the input file has been divided for processing. You can also monitor its progress by seeing how many records have been written to the Z13. (The assumption is that one Z13 record is written for each BIB record.) This SQL command shows you how many there are:

SQL-USM01> select count (*) from z13;

p_manage_12

[This job should normally only need to be run as part of the original conversion or an upgrade. See Section 2.4, Note 1.] The Oracle files involved are the Z103s.

 - When the job is run for the BIB or Course Reserve library, the BIB or Course Reserve Z103 is dropped/recreated.

 - When it is run on the ADM, the ADM Z103 is dropped/recreated and the BIB and Course Reserve Z103 are updated.

 - When it is run on the HOL, the HOL Z103 is dropped/recreated and the BIB Z103 is updated.

- When it is run for the AUThority library the AUThority Z103 is dropped/recreated.

The “central” log file for the job is xxxnn_p_manage_12.nnnnn (where “xxxnn” is the library). If the job is submitted through the GUI Cataloging Services, this log will be in the alephe/scratch directory.

There is one step to the job: p_manage_12_a.

This step writes work files and “sub-logs” (example: p_manage_12_a_1.log) to the xxxnn/scratch directory. In addition, there’s a p_manage_12.cycles file which shows the different sections into which the input file has been divided for processing. As a sub-step is performed for a particular section of the file it is marked with a “+”.

When the jobs are done you should spot-check with util f/12 or run the following SQL to see if the links have been properly built:

 SQL-xxx01> select count(*) from z103 where Z103_LKR_LIBRARY = 'xxx50';

 SQL-xxx01> select count(*) from z103 where Z103_LKR_LIBRARY = 'xxx60';

The results should be in the thousands.

p_manage_17

The 15.2-up p_manage_17 is multi-process. p_manage_17 does not lock the library.

The Oracle files involved are the Z01 and the Z0102. The job updates the z01_filing_sequence of headings whose z01_acc_code, z01_alpha, and z01_filing_text are the same. In addition, the job updates the Z0102 records linked to any Z01 it updates.

The log file for the job is xxxnn_p_manage_17.nnnnn (where “xxxnn” is the library). If the job is submitted through the GUI Cataloging Services menu, this log is in the alephe/scratch directory.

This job does not write any work files; it updates the Z01 file directly. To monitor the progress of the p_manage_17, examine the logs in the $data_scratch directory. It writes a p_manage_17.cycles file and a p_manage_17.log file for each cycle to $data_scratch. In addition, the p_manage_17_a step, which does parallel retrieval of the records from the Z01 produces a p_manage_17.cycles file. This file has a column for each sub-step of the job and rows showing the different sections into which the input file has been divided for processing. As a sub-step is performed for a particular section of the file it is marked with a “+”.

See Appendix F, Section 3a, for how to tell if p_manage_17 was successful.

p_manage_27

The Oracle files involved are

doc - the document table which is being indexed (in the case of a BIB library, this is the
 BIB file)

Z101 - sort file

The log file for the job is xxxnn_p_manage_27.nnnnn (where “xxxnn” is the library). If the job is submitted through the GUI Cataloging Services, this log is in the alephe/scratch directory.

This job writes a z101.seq file to $data_files. It writes a sub-log for each process to the xxxnn/scratch. In addition, there’s a p_manage_27.cycles file which shows the different sections into which the input file has been divided for processing. You can also monitor its progress by seeing how many records have been written to the z101 file. This SQL command shows you how many there are:

SQL-USM01> select count (*) from z101;

p_manage_32

The Oracle files involved are:

Z01 - headings file

Z02 - ACCDOC – which documents contain each heading

Z0102 - Counters for Logical Bases -- which headings belong to which logical bases

[Previously, the OPAC programs needed to read the word indexes (bitmaps) of the Z02s for each Z01 in order to determine if the holdings should be displayed for a particular base. For a small base, it could take many reads to find the records to fill the screen. The Z0102 makes this unnecessary; improving performance for small bases. Be sure to check the information on p_manage_32 in section 2.3, above.]

The “central” log file for the job is xxxnn_p_manage_32.nnnnn (where “xxxnn” is the library). If the job is submitted through the Services menu, this log will be in the $alephe_scratch directory.

There are three steps to the job: p_manage_32_a, _c, and _d.

The p_manage_32_a creates a cycle in the p_manage_32.cycles file for each base which has “Y” specified in column 8 of tab_base.eng. It reads the Z01 headings, sorts them, and matches their Z02s with each base; the p_manage_32_c moves the file to $data_files/z0102.seq and loads them into Oracle. These steps write their own “sub-logs” (example: p_manage_32_a_1.log) to the xxxnn/scratch directory and produce a p_manage_32.cycles file. As each base is completed, it is marked with a “+” in the cycles file.

p_manage_102

The Oracle files involved are the

doc - the authority document table

Z01 - the bib headings file

The log file for the job is xxxnn_p_manage_102.nnnnn (where “xxxnn” is the library).
There are two steps to the job: p_manage_102_a and p_manage_102_c.

The p_manage_102_a reads the headings from the authority record and sorts them; the p_manage_102_c builds the $data_files/z01.seq and loads it to the Oracle table. The job writes a sub-log for each process to the xxxnn $data_scratch. In addition, there’s a p_manage_102.cycles file which shows the different sections into which the input file has been divided for processing.

You can also monitor the progress of the job by seeing how many records have been written to the Z01. (The assumption is that one Z01 record is written for each heading in the authority file .) This SQL command shows you how many have been written:

SQL-USM01> select count (*) from z01;

p_union_02

The Oracle files involved are the

 Word and Direct index tables (which are read)

 doc - the bib document table (which is read)

 Z120 - the equivalencies table (which is written to)

The log file for the job is xxxnn_p_union_02.nnnnn (where “xxxnn” is the library).
The job writes a sub-log for each process to the xxxnn $data_scratch. In addition, there’s a p_union_02.cycles file which shows the different sections into which the input file has been divided for processing.

You can also monitor the progress of the job by seeing how many records have been updated in the Z120:
SQL-USM01> select count (*) from z120 where z120_update_flag ^= ‘N’;

UE_08

The Oracle files involved are the BIB Z01 and the authority library Z01.

The log appears as “run_e_08.nnnnn” in the xxxnn/scratch directory (where “xxxnn” is the library. See Section 2.3, above, and “Estimating Run Time” below for more information on ue_08. We recommend that you not do a complete ue_08 run but instead precede p_manage_02 by p_manage_102, to pre-populate the bib library with the authority headings.

9. Troubleshooting

In general, you should let the job run to completion and then examine the log(s) as described in the previous sections to make sure that it was successful.

 Diagnosing Success/Failure of Indexing Jobs

See Appendix F, below.
Job is Stuck

If you find that the job is not progressing (it is writing out the same record over and over again, or not writing out any records), you should cancel the job. Please note that in the Oracle load step some jobs may go for long periods without writing anything to the log file. This is normal. You can use the

 SQL-xxx01> select count (*) from znn;

query to monitor progress in writing to the actual Oracle table.

You may see in the log of p_manage_01_a, or p_manage_02_a, that the same loop of 20000 (for example) repeats itself because of a crashing expand on a particular document. Please contact Ex Libris Customer Support in such cases.
Or you may see that certain p_manage_01_a cycles are stuck. You see this in the p_manage_01.cycles file (where certain cycles are still in step 1 while cycles after them have all steps done). And the logs for these cycles haven't been written to for a long time. This is probably a problem in trying to extract a particular bib record. To see what record that is, look at the end of the manage_01_1_n file (where "n" is the process number). For instance, if the p_manage_01_a_6.log is the one which hasn't been written to, then check the end of the manage_01_1_6 file.

As noted at the end of section 4 (“Processes and Cycle Size”) (see above), specifying a cycle size greater than 50000 can cause the p_manage_01_c step to be extremely slow and prevent any z97 records from actually being written.

If multiple cycles are stuck, it can be due to an Oracle Archiving problem. You may not see any message in the job logs, but doing util c/4 or util o will give you a “ORA-00257: archiver error”. This causes the database to be "on hold" until it can write to the archive directory. You need to compress/delete any superseded logs (logs predating the last complete backup) or add files to the file system on which the archive directory resides.
For information on how to cancel/kill jobs, see Appendix E.

Another case (SKB 5949): Though the ./xxx01/scratch/p_manage_12.cycles file has a "+" for the last cycle, indicating that it has completed successfully, p_manage_12 continues to run: each of the p_manage_12_a_n.log files continues to have "sleeping" written to it.

Answer:

The $aleph_proc procedures which use a cycles file will not stop as long as one of the cycles has a "?".

In this case, though all the other (26) cycles had "+", the 12th cycle still had "?". The p_manage_12_a_4.log, which processed this cycle, did not show any error.

I didn't think that the proc would leave a cycle as "?", but apparently it can since process 4 went on to process other cycles after number 12.

A rerun of the job (without any change) ran successfully to completion.
“File Not Found”

You get messages like these in running p_manage_01 or another batch job which uses work files:

 I/O error : file ... File not found

 SQL*Loader-500: Unable to open file
 SQL*Loader-553: file not found
 SQL*Loader-509: System error: No such file or directory

where the file it's looking for is a work file.

Answer:

The cause is in the step which failed to create the work file which it is trying to open. Look in the preceding sections of the log for sort errors or other errors which could have caused the file for this particular cycle to not be created.

Sort Errors

My experience has been that there are 3 kinds of errors which can occur in sort:

 (1) "file too large" -- input file too big;

 Solution: reduce the relevant loop_length (example: p_manage_01_loop_length) in
 the xxx01/prof_library file.

 (2) "write error: No space left on device" -- you've run out of space in the $data_scratch
 to which it is trying to write the sorted record.

 Solution: Clean the $data_scratch directory to make more space or increase the
 space for the disk it resides on or move $data_scratch to a different drive
 (with more space). (See section 5, “Disk Space and File Locations”
 above.)

 (3) you've run out of space in $TMPDIR. Such messages as:

 "sort: unable to reallocate buffer",

 "write error occurred while sorting", or

 "write error occurred while merging”.

 Solution: Clean the $TMPDIR directory to make more space or increase the
 space for the disk it resides on or move $TMPDIR to a different drive
 (with more space). (See section 5, “Disk Space and File Locations”
 above.)

Restart

When simpler indexing jobs, such as p_manage_07, which read through the input file sequentially and update it fail, you should be able to:

1. determine the reason for failure – usually a lack of Oracle space – and correct it.

2. locate the cycle immediately preceding the last incomplete cycle (! or ? or *) in the cycles file (see the previous "Monitoring the Jobs" section); note the ending record

3. delete all of the index records which have been loaded which are after the ending record found in step 2.

4. resubmit the job in Update mode (“0”), specifying (the ending record from step 2) + 1 as the From key for the job to start with.

Multi-step jobs such as p_manage_01 and _02 are more complicated. There is a potential to use the ".cycles" files to make the job resume at the point where it left off when it is resubmitted. Among other things, you should edit the .cycles file itself so that sections that were in the middle of being processed will be redone.

Such restart should be done only in coordination with Ex Libris Customer Support. Generally, it is better to start the job over from scratch. Some exceptions:

Restart of p_manage_01_e

If the last step of the long p_manage_01 job (p_manage_01_e) fails, you can save quite a bit of time by rerunning just this step. It’s handled differently than the failure of the a-d1 steps (where you would modify the cycles file). p_manage_01_e must be rerun as a whole, for all cycles:

· Drop/recreate the z98 table (using util a/17/1).

· Drop the z98_id (using util a/17/4).

· Run the p_manage_01 with the same parameters as before, except, instead of specifying “p_manage_01” as the proc to be executed, specify “p_manage_01_e” and include the main proc, “p_manage_01”, after the other parameters. The commands would be:

· > setenv p_lng ""

· > csh -f $aleph_proc/p_manage_01_e USM01,1,000000000,999999999,,9 p_manage_01 > & ... &

Note that the csh command needs to be preceded by:

 > setenv p_lng ""

(that is, two double quotation marks right next to each other).
· Build Oracle indexes*

· Drop z97_id1, z97_id2, z97_id3 (if they exist) (util a/17/4)

· Create z97_id1, z97_id2, and z97_id3 (util a/17/2) (Note: z97_id3 is optional; only used if you have z970 Word synonyms)

· Create z98_id (util a/17/2)*

 *If the previous p_manage_01 run built the z97 indexes successfully, you may need to do only the z98_id. You can do util a/17/14 to check the current state of the indexes.

Restart of p_manage_01_a

From KB 8192-4040…. Following a similar procedure for p_manage_02, described in KB 8192-2231 (see below), we restarted p_manage_01 as follows:

[Note: The following should be done only in consultation with Ex Libris Support.]

1. Save the current p_manage_01 as p_manage_01.normal:

 cd $aleph_proc

 cp -p p_manage_01 p_manage_01.normal

2. Insert two lines into p_manage_01:

 if (`gs tab00_correct` != 00) then

 echo "Error(s) in tab00, EXIT"

 goto ex_p_manage_01

 endif

 goto restart <----INSERT

 $aleph_proc/aleph_plus @$aleph_proc/correct_last_doc_number.sql $p_active_library

...

...

 cd $data_scratch

 rm manage_01*

 rm p_manage_01_*.log

restart: <---INSERT

 cd $aleph_proc

3. create a "p_manage_01.1strun" directory in the abc01 $data_scratch directory and move all of the p_manage_01* files to it. (Note: This is *just* the p_manage_01* log files; *not* the manage_01* files.)

4. Copy the p_manage_01_a.cycles file from that directory back to $data_scratch and then edit the actual version (in $data_scratch) as follows:

 Change all the "*" to "-".

 Change all the "!" to "-".

 Change all the "?" to "-".

[In this case, there were no cases of "!" in columns 2-4. If there are, there *may* be a potential for the restart creating certain duplicate z97/z95's. Though this may not really be a problem.... ("!" in Column 1 can be ignored; that is never a problem -- though, as noted above, it should be changed to "-".)Columns 2, 3, and 4 of the p_manage_01_a.cycles are "single-threaded", that is, the job will only be working on one column for one cycle. Column 2 is the writing of the Z97's. Column 4 is the writing of the Z95's.]

5. (Since the previous p_manage_01 failure will have left the library locked) use util c/6 to unlock the library.

6. Submit p_manage_01 with *exactly* the same parameters as were used in the original submission. (If you submit it from the command line, you can add a suffix of "restart" to the log file name.)

7. After the p_manage_01 restart has been submitted, restore the regular p_manage_01 proc:

 ap

 mv p_manage_01 p_manage_01.restart

 mv p_manage_01.normal p_manage_01

Restart of p_manage_02

From KB 8192-2231…. Note: This is very similar to the preceding section “Restart of p_manage_01_a”.
We were able to do a restart of p_manage_02 as follows:

1. Save the current p_manage_02 as p_manage_02.normal:

 cd $aleph_proc

 cp -p p_manage_02 p_manage_02.normal

2. Insert two lines into p_manage_02:

 lock_library b

 if ($lock_lib_exc_st == not_locked) then

 abort_exit

 endif

 goto restart <----INSERT

 $aleph_proc/aleph_plus @$aleph_proc/correct_last_doc_number.sql $p_active_library

...

...

 cd $data_scratch

 rm manage_02*

 rm p_manage_02_*.log

restart: <---INSERT

 cd $aleph_proc

3. create a "p_manage_02.1st" directory in the sys01 $data_scratch directory and move all of the p_manage_02...log files to it. (Note: This is *just* the p_manage_02* log files; *not* the manage_02* files.)

4. copy the p_manage_02.cycles file to that directory and then edit the actual version (in $data_scratch) as follows:

 Change all the "*" to "-".

 Change all the "?" to "-".

 Change all the "!" to "-".

 Change both columns 1 and 2 for step 124 only to "-". (We got an error when we left a "+" in the first column.)

0123 + + + + 006100001

 006150000

 $

0124 - - - - 006150001

 006200000

 $

0125 + - - - 006200001

 006250000

 $

0126 + - - - 006250001

 006300000

 $

0127 + - - - 006300001

 006314253

 $
5. delete all of the Z01's created for step 124:

 The first z01_acc_sequence (the first 9 bytes in the first line) in the manage_02_4.124 is 117289857.

 Thus, I ran the following SQL to delete from 117289857-up:

 SQL-SYS01> delete from z01 where z01_acc_sequence > '117289856';

 200012 rows deleted.

 SQL-SYS01> commit;

 Commit complete.

Note: Columns 2, 3, and 4 of the p_manage_02.cycles are "single-threaded", that is, the job will only be working on one column for one cycle. In this case, that was column 2 of cycle 124. Column 2 is the writing of the Z01's. If the abort occurs in column 4 (the writing of the Z02's), that would require a different deletion.

6. (Since the previous p_manage_02 failure will have left the library locked) use util c/6 to unlock the library.

7. Submit p_manage_02 with *exactly* the same parameters as were used in the original submission. (If you submit it from the command line, you can add a suffix of "restart" to the log file name.)

8. After the p_manage_02 restart has been submitted, restore the regular p_manage_02 proc:

 ap

 mv p_manage_02 p_manage_02.restart

 mv p_manage_02.normal p_manage_02

9. Please note that if, for whatever reason, you have to start p_manage_02 over from the beginning, it must be preceded by p_manage_102 (--assuming that the original run was preceded by p_manage_102).

Job is Slow

If you find that a job is taking much longer than it should (based on previous experience or on Section 10 of this document), you can use this to diagnose:

Has something changed? (More records? Different expands being used? Expands which read additional records can add greatly to i/o and total time.)

Or, does one of the files which it's reading not have a proper Oracle index built on it? {Tables lacking indexes *can* still be used (--Oracle doesn't give you any error message--), it's just that reading of the records is extremely slow.}

You can use util a/17/14 ("List existing indexes for a table") to check what Oracles indexes exist and if they are valid.

If the slowness is in the first step (the extraction step) and if it is extremely slow, then check on the indexes for "z00" --you should see "z00_id". And also check the Oracle indexes for any tables involved in the expands. For the LOC/PST expand this includes: the bib z103, the ADM z00 and z30 tables, and the HOL z00.

If the slowness is in the load step, check the Oracle indexes of the tables which constitute the ALEPH index being built.

If you are working with a new version, consider that possibility that a new index may have been added for the file but is not actually defined in your Oracle.

Are you specifying the same number of processes as was specified previously?

Has the cycle size (p_manage_01_loop_length, p_manage_02_loop_length, etc.) been greatly reduced? (It should never be less than 1% of the number of doc records; 50000 works well for anything under 2 million doc records.) See discussion in Section 5 (Disk Space).

Was Oracle Archive Logging turned off when you ran the job before, and it's now turned on? This can make a 20-50% difference.

[Note: There are other entries in the CRM Support Knowledge Base relating to the slowness of specific jobs: search by job number.]

Specific Error Messages

For suggestions on how to handle other specific error messages/error conditions, please consult the CRM Support Knowledge Base or call/email Ex Libris Customer Support.

Problems using/searching indexes

If the problem you are seeing is in using/searching indexes, then please consult the “Diagnosing Index Problems” document.
10. Estimating Run Time

[Note: Sites with relatively small databases (fewer than 300,000 titles) which can be processed in an overnight window will probably want to ignore this section.]

The run time depends on

· The number of BIB (or authority) records to be processed

· The number of processes specified (generally, the greater the number of processes, the less the run time) (see Section 4)

· The “cycle size” (the value of loop_length in the xxxnn/prof_library; generally, the greater the cycle size the less the run time) (see Section 4)

· Whether or not archive logging is on (see Section 3),

· What expand routines are specified in xxx01/tab/tab_expand for

· WORD (in the case of p_manage_01),

· ACC (in the case of p_manage_02), and

· INDEX (in the case of p_manage_05)

· the more expands specified and the more other records they read (items, HOL, etc.), the longer the job will take; and

· (For p_manage_01, 02, or 05) how many different index codes you have specified in tab00/tab11 and how many indexed fields (on average) the BIB (authority) records contain which are included in these indexes

· The sort routine being used can greatly affect the time jobs take. The standard IBM/AIX sort is particularly slow. We have found that by substituting gsort the total run-time for p_manage_01 can be cut by 5-10 hours. Contact Ex Libris Customer Support if you have questions.

Here are some examples of how long particular jobs have taken (in hours) at particular sites (A, B, C, D, E, and F). (See further below for some v20 Parallel Indexing stats.)
Site A
(version 16.02) 8 processors; 2 million BIB records; 750,000 authority

BIB indexes: 16 IND; 50 ACC; 58 Word (16 million ACC headings)

Authority: 13 IND; 13 ACC; 17 Word (5 million ACC headings)

All jobs run with 9 processes*; archive logging off;

xxx_loop_length = 50000

Site B
(version 16.02) 8 processors; 2.3 million BIB records; 1.1 million authority

BIB indexes: 20 IND; 30 ACC; 36 Word (35 million ACC headings)

Authority: 13 IND; 20 ACC; 10 Word (6 million ACC headings)

All jobs run with 9 processes*; archive logging off;

p_manage_01_loop_length = 40000; other_xxx_loop_length = 50000

Site C
(version 16.02) 7 processors; 1 million BIB records; 660,000 authority

BIB indexes: 25 IND; 30 ACC; 24 Word (6 million ACC headings)

All jobs run with 6 processes*; archive logging off;

p_manage_01_loop_length = 50000

Site D
(version 18) Intel Xeon CPU X7350 cpu MHz: 1603;
 1 million BIB records; 46,000 authority

BIB indexes: 14 IND; 27 ACC; 27 Word (8.7 million ACC headings)

Authority: 10 IND; 10 ACC; 17 Word (535,000 ACC headings)

p_manage_nn run with 16 processes; archive logging off;

p_manage_nn_loop_length= 50000

Site E
(version 19) sun4u NumCPU= 16
 1.4 million BIB records; 250,000 authority

BIB indexes: 28 IND; 32 ACC; 29 Word (5.5 million ACC headings)

Authority: 5 IND; 20 ACC; 14 Word (1.6 million ACC headings)

p_manage_nn run with 6 processes*; archive logging off;

p_manage_nn_loop_length= 50000

Site F
(version 20) Intel Xeon CPU E5450 cpu MHz: 2992;

 2.7 million BIB records; 4.2 million authority

BIB indexes: 28 IND; 26 ACC; 32 Word (17 million ACC headings)

Authority: 3 IND; 20 ACC; 14 Word (14.6 million ACC headings)

p_manage_nn run with 6 processes*; archive logging off;

p_manage_nn_loop_length= 50000

Site G
(version 20) sun4v NumCPU= 32;

 5.6 million BIB records; 8.2 million authority

BIB indexes: 20 IND; 40 ACC; 20 Word (51 million ACC headings)

Authority:
p_manage_nn run with 8 processes*; archive logging on;

p_manage_nn_loop_length= 40000 (manage-01; manage-02); 50000, others

Note 1: These times are with archive logging off (just prior to STP). Running the job with archive logging on will add 25-50% to the run time. Post-STP you are more likely to be running just one or two indexing jobs, with archive logging on. (If circulation or other activity is continuing to occur, you need to have archive logging on.)
* # of processes: Though the indexing jobs were run with 6 or 9 processes in some cases, as described in section 4 of this document, with the exception of p_manage_01 and p_manage_02, we recommend running the jobs with the number of processors times 2. For a typical machine with 8 processors, this would be 16 processes. Consult section 4.

BIB (hours)
 Authority (hours)

p_manage_01:

Site A (16.02):
 13.5

1.0
Site B (16.02):
 21.0
 3.5

Site C (16.02):
 5.0

Site D (v18):

 20.5

0.5

Site E (v19):
 8.75

1.0

Site F (v20): 22.5 0.75
p_manage_02:

Site A (16.02):

 8.75 hrs.

2 hrs.

Site B (16.02):

 22.0

2.5

Site C (16.02):

 4.5

Site D (v18):

 2.75

0.75

Site E (v19):
 11.0

4.25

Site F (v20): 4.5 2.25
 BIB (hours)
 Authority (hours)
p_manage_05:

Site A (16.02):

?? hrs

0.25 hrs.

Site B (16.02):

2.5

0.5

Site C (16.02):

1.0
Site D (v18):

 0.5

0.1

Site E (v19):
 2.5

0.1

Site F (v20): 0.75

 0.25
p_manage_07:

Site A (16.02):

4.5 (with Z00R) 1.0 hr.

Site B (16.02):

1.25(without Z00R)
0.25

Site C (16.02):

1.0 (without Z00R)

Site D (v18):

 2.5 (with Z00R)
0.1

Site E (v19):
 1.5 (without Z00R)
0.1

Site F (v20): 0.2 (without Z00R) 0.2
p_manage_12*:
Site B (16.02):

0.25 hrs (xxx01)

0.75 (xxx50)

0.5 (xxx60)

14.2 site:

0.5 hrs (xxx01)

4.5 (xxx50)

5.0 (xxx60)
Site E (v19):

0.1 hrs (xxx01)

0.5 (xxx50)

0.5 (xxx60)

Site F (v20):

0.1 hrs (xxx01)

0.2 (xxx50)

0.1 (xxx60)

* Normally needs to be run only as part of conversion/upgrade

p_manage_17:

Site A (16.02):

2.5 hrs.

0.5 hrs.

Site B (16.02):

19.0 3

Site D (v18):

1.3

 0.1

Site E (v19):

 1.7
 0.25

Site F (v20):

3.0
 2.5
p_manage_27:

Site A (16.02):

1.75 hrs.
 0.25 hrs.

Site B (16.02):

2.75

0.25

Site C (16.02):
2.0

Site D (v18):

1.3

0.1

Site E (v19):

2.0

0.1

Site F (v20):
1.0

 0.25
p_manage_32:
Site with 70 million

<not applicable>
 Z01’s (14.2) 15 hrs.

Site with 36 million

 Z01’s (v18) 3.5 hrs. (the version 18 p_manage_32 is faster)

Site E (v19) (12 bases) 0.5 hrs.

 BIB (hours)
 Authority (hours)
p_manage_35:
Site C (16.02)
6 hrs.

<not applicable>
Site D (v18):

2.5

Site E (v19):
 3.0

Site F (v20): [none]

p_manage_102:

Site A (16.02):
1.25 hrs.

<not applicable>

Site B (16.02):
4.0

Site D (v18):

0.75

Site E (v19):
 3.75

Site F (v20): 3.25

p_union_01: 15-30 minutes
p_union_02:

v16 site with 3.6 million bibs: 26.0 hours

v18 site with 3.8 million bibs: 16.0 hours

v19 site with 5.7 million bibs: 25.5 hours

UE_08: When run in C (Continuous) mode with “Write Z07s?” set to “N”, a complete run of ue_08 takes roughly 1 second for every 50 ACC headings. For a typical site this might be 3 days. We saw at one site that ue_08 was processing, on average, the following numbers of "-NEW-" ACCs: 20/sec or 1200/min or 72,000/hour.]

But, as described in section 2.3 above, you should not need to do a complete ue_08.
To find Number of ACC headings:

 sql> select count(*) from z01;

To find Number of ACC headings which are not linked to an authority record:

 sql> select count(*) from z01 where substr(Z01_REC_KEY_4,6,9) ^= '000000000';

To find Number of ACC headings remaining to be processed by ue_08:

 sql> select count(*) from z01 where substr(Z01_REC_KEY_4,1,5) = '-NEW-';

Note: you should never run ue_08 in N (New) mode –except in the rare circumstances noted above in section 2.3.

p_acq_04
ADM (hours)

Site A (16.02):

3 hrs.

Site B (16.02):

1.5

p_manage_111
ADM (hours)

Site B (16.02):
p_manage_111 z70
0.25

p_manage_111 z303
1

p_manage_111 z76
1 min.

Site D (v18) z303:
0.75
Site F (v20)z70/z72: 0.5

10.1 University of Minnesota Parallel Indexing Stats, March 2012
p_manage_01:

p_manage_01, 8 processes, in umn02:
 start: Tue Sep 13 12:32 2011
 end: Thu Sep 15 09:56 2011 (44 hours)

archive logging = yes
152 a-cycles
 78 e-cycles

 6,085,304 bib records (last-doc-number)
54,995,041 keywords (last-word-number)

Time to move the umn02 data to umn01:

Time to export from umn02 using p_file_03 (this was done in advance of the actual switch on Sunday)
z95 (17 G) 8:10 - 8:22 ~12 minutes
z97 (29.875 G) 8:22 - 9:10 ~50 minutes
z98 (3.25 G) 9:10 - 12:24 ~2 hours 15 minutes
 Less than 4 hours

We had the Oracle DBA back up the umn01 z95, z97, z98, z980 on Sunday morning right before starting the import "just in case" (she used the Oracle data pump for this and that took less than an hour).

Time to import to umn01 on Sunday morning using p_file_04
z95 7:06 - 7:46 ~40 minutes
z97 7:46 - 8:15 ~30 minutes
z98 8:15 - 9:01 ~15 minutes
 Less than 1.5 hours

Temporary space used during indexing:
 TMPDIR: maxed at 2.8 additional (peaked at 9/15/2011 12:14 AM)
 UMN02 scratch: maxed at 106G additional (peaked at 9/15/2011 7:45 AM)
 UMN02 files: maxed at 6.7 G (peaked at 9/15/2011 8:46:11 AM)

Post indexing space
 UMN02 scratch: at the end had 74G of residuals to clean-up (notably the manage_01_4.X files)
 UMN02 files: export size of z95, z97, z98 (after p_file_03 was run): 41G

Appendix A: Sample Commands for Running Jobs from Command Line

Note 1: These are intended as samples only. They are for versions16 - 20. The parameters may not be appropriate for your particular site. If you have a question as to what the parameters in the command should be, we suggest submitting the job from the Services menu and seeing (in the main log in $alephe_scratch) what parameter string is generated.

Note 2: If you paste a command from a Word document like this onto the unix command line, you can do only one line at a time. Pasting both lines of a two-line command will not work.

Bib library:

csh -f $aleph_proc/p_manage_05 USM01,1,000000000,999999999,16,0,00, > & $alephe_scratch/usm01_p_manage_05.log &

csh -f $aleph_proc/p_manage_01 USM01,1,000000000,999999999,,8,0,00, > & $alephe_scratch/usm01_p_manage_01.log &

csh -f $aleph_proc/p_manage_07 USM01,1,000000000,999999999,16,0,00, > &

$alephe_scratch/usm01_p_manage_07.log &

csh -f $aleph_proc/p_manage_27 USM01,1,000000000,999999999,16,0,00 > & $alephe_scratch/usm01_p_manage_27.log &

 Headings:

csh -f $aleph_proc/p_manage_102 USM01,USM10,1,000000000,999999999,1xxt,16 > & $alephe_scratch/usm01_p_manage_102.log &

The force_chk parameter (following the number of processes) should be “Y” if p_manage_02 has been preceded by p_manage_102, otherwise, “N”.

The “Run in Duplicate Mode” should always be “N” (No).
csh -f $aleph_proc/p_manage_02 USM01,0,000000000,999999999,,8,Y,N,0,00 > & $alephe_scratch/usm01_p_manage_02 &

[v17-up:]

csh -f $aleph_proc/p_manage_17 USM01,C,000000000,999999999,16 > & $alephe_scratch/usm01_p_manage_17.log &

[optional]

csh -f $aleph_proc/p_manage_32 USM01,1,ALL,16 > & $alephe_scratch/usm01_p_manage_32.log &

[optional]

csh -f $aleph_proc/p_manage_35 USM01,1,000000000,999999999,16
> & $alephe_scratch/usm01_p_manage_35.log &

 Union, optional:
csh -f $aleph_proc/p_union_01 USM01

> & $alephe_scratch/usm01_p_union_01.log &

csh -f $aleph_proc/p_union_02 USM01 USM01,000000000,999999999,16,B,

> & $alephe_scratch/usm01_p_union_02.log &

Authority library:

csh -f $aleph_proc/p_manage_05 USM10,1,000000000,999999999,16,0,00, > & $alephe_scratch/usm10_p_manage_05.log &

csh -f $aleph_proc/p_manage_02 USM10,1,000000000,999999999,,8,N,N,0,00 > & $alephe_scratch/usm10_p_manage_02 &

csh -f $aleph_proc/p_manage_01 USM10,1,000000000,999999999,,8,0,00, > & $alephe_scratch/usm10_p_manage_01.log &

csh -f $aleph_proc/p_manage_07 USM10,1,000000000,999999999,16,0,00, > &

$alephe_scratch/usm10_p_manage_07.log &

csh -f $aleph_proc/p_manage_27 USM10,1,000000000,999999999,16,0,00 > & $alephe_scratch/usm10_p_manage_27.log &

[v17-up:]

csh -f $aleph_proc/p_manage_17 USM10,C,000000000,999999999,16 > & $alephe_scratch/usm01_p_manage_17.log &

csh -f $aleph_proc/p_manage_105 USM10,USM01,0,00 > & $alephe_scratch/usm10_p_manage_105.log &

ADM library:

csh -f $aleph_proc/p_acq_04 USM50,1 > & $alephe_scratch/usm50_p_acq_04.log &

Note: p_cir_25 is for 16.02-up only:

csh -f $aleph_proc/p_cir_25 USM50,Y > & $alephe_scratch/usm50_p_cir_25.log &

Note: By leaving the table parm empty, you can run p_manage_111 for the z303, z70, and z76 all at once:

csh -f $aleph_proc/p_manage_111 USM50,,Y,0,00 > & $alephe_scratch/usm50_p_manage_111.log &
Other:

csh -f $aleph_proc/p_manage_12 USM10,Y,Y,000000000,999999999,9,0,00 > & $alephe_scratch/p_manage_12_usm10.log &

* p_manage_12 should normally only need to be run for bib, ADM, HOL, or Course Reserve library as part of the original conversion or an upgrade. See Section 2.4, Note 1.]
 Appendix B. How Many Processors Do You Have?

 For Sun or pre-GNU/Linux, use the command:

 "uname -X" (the numCPU value)

 or, as root:

 "psrinfo"

 ...

 For AIX, Digital, or Compaq use the command:

 "lsdev -C | grep proc"

 (there will be a line for each processor in the resulting display)

 or, as root,

 "lcsfg -v | grep proc"

 For GNU/Linux:

· view /proc/cpuinfo

 There’s a separate section in cpuinfo for each processor.

The number of processors is not so significant in GNU/Linux.

The “cpu MHz” is normally the best measure of the processing power.
Note that with GNU/Linux, you usually have “quad cores” so you would multiply the processors shown by 4 to get the equivalent processing power.

Appendix D. Adjacency

Prior to version 14.2, ALEPH did adjacency searches as a zero-level proximity search (wrd = martial !0 law), which means:

Do a Boolean AND of the words to find all records which contain them and then examine the z95 table for these records to see which ones contain the words next to each other.

Some searches took a long time to return results; a few searches would take so long that they would time-out before giving results.

In 14.2, we introduced a new form of adjacency. The new mechanism creates a word from each pair of words. Thus, in addition to the words "martial" and "law", the word "martiallaw" will be indexed.

The new Adjacency allows for the use of truncation (wildcards) in the adjacent search, which the old Adjacency did not.

Though an individual user can enter in a search such as “wrd = martial !0 law”, in version 16.02-up, there is no ability to have “Words adjacent = Yes” on the search screen be transformed into a zero-level proximity search. Thus, in version 16.02-up:

· Specifying “ADJACENCY_TYPE = 0” in aleph_start does not work.

· There is an obsolete ADJACENCY_TYPE = 1; that should also not be used.

· You must specify ADJACENCY_TYPE = 2 in aleph_start.

The new mechanism creates a word from each pair of words. Thus, in addition to the words "great", "britain", and "army", the words "greatbritain" and "britainarmy" will be indexed.

When you search on "great britain army" with adjacent = Yes, it will find the records containing the words "greatbritain" and "britainarmy".

But there's nothing to require that all three words "great britain army" be next to each other in the record.

We have found that this heuristic is very fast and gives good results in the majority of cases. If, in a particular case, there are too many false drops, one could do a zero proximity search ("wrd= great !0 britain !0 army") which will do the "old adjacency" and, though taking longer, will give you only those records where all three words are actually adjacent.

Appendix E. Stopping/Killing Jobs

Killing jobs is a unix system function and you should consult your unix system administrator for whatever local policies your site might have. That said, we can offer these guidelines:

There are ALEPH utilities for stopping servers (util w), daemons (util e), and the batch queue (util c), but there is no utility for stopping a batch job. You need to use the unix "kill" command.

First, you should be certain that the job really needs to be killed. (Consult US PRB 850 in this regard.)

To locate the processes associated with the job, you enter a command like this: " ps -ef | grep manage_01 ". (Note: some systems may require tick-marks: " ps -ef | grep 'manage_01' ".) You should *not* include the "p_" prefix.

Then you do a kill command for each process. The process number you enter in is the *first* number in the line. You can include multiple processes in a single kill command. Your grep process will show up in the display. You don't want or need to kill that.

So, let's say you see this:

 aleph 7207 7178 0 11:37:24 pts/7 0:00 grep manage_01

 aleph 8651 7730 0 00:55:28 ? 0:00 csh -f p_manage_01_a VCU01,1,0000 00000,999999999,,4, p_manage_01 3

 aleph 7730 7729 0 00:54:42 ? 0:00 csh -f /exlibris/a50_5/aleph/proc /p_manage_01 VCU01,1,000000000,999999999,,4,

 aleph 19001 8595 21 08:36:54 ? 137:51 /exlibris/a50_5/aleph/exe/rts32 b_manage_01_a

You would enter in:

 kill -1 8651 7730 19001

Do the "ps -ef | grep" to verify they are gone.

If not, repeat the process using "kill -9" instead:

 kill -9 7730 19001

When you kill a job like this, it will leave the library locked. Before restarting the job you will need to use util c/6 to unlock the library.
The preceding sequence should be enough. The “kill –1” [or –9] should kill all subsidiary processes which were spawned. As a double-check you can look for tables this job might be loading:

ps -ef | grep -i z9

or

ps -ef | grep -i z0

Some jobs can sometimes correctly load zero records for certain steps and if you have "holes" of 1,000+ records in your database you can have cycles which will load fewer or no records, but, generally, for cycles of the same kind you should see similar "Load completed" numbers.

Appendix F. Diagnosing Success/Failure of Indexing Jobs
Two cases are discussed:

(1) when there’s an “Exiting due to job suspension” message

a. In General

b. Subcase: “Only x indexes out of y … were created”

 (2) when there is no “Exiting due to job suspension” message
1. Diagnosing the “Exiting due to job suspension” (In General)

16.01 rep_ver 4942 added job monitoring and failure detection to the following p_manage_nn (indexing) jobs:

 p_manage_01, p_manage_02, p_manage_05,

 p_manage_07, p_manage_12, p_manage_16,

 p_manage_17, p_manage_27, p_manage_32,

 p_manage_35, p_manage_102, p_manage_103

To demonstrate how this works, I started p_manage_27 and then intentionally killed one of the sub-processes to cause the job to fail.

In the case where a job has finished (where it no longer appears in util c/1), one should:

1. check (with util c/4) to see if the job left the library locked and

2. examine the job log in $alephe_scratch for indications of success/failure.

When the job fails, the message “Exiting due to job suspension” is written to the $alephe_scratch job log.

In this case, we see the following at the end of the $alephe_scratch/usm01_p_manage_27 log:

SQL-ALEPH_ADMIN>

1 row updated.

Commit complete.

Disconnected from Oracle9i Enterprise Edition Release 9.2.0.3.0 - 64bit Production

With the Partitioning, OLAP and Oracle Data Mining options

JServer Release 9.2.0.3.0 - Production

No match

No match

[1] 11955

[2] 11998

[3] 12039

[2] - Killed csh -f p_manage_27_a USM01,1,000000000,999999999,2,p_manage_27 2 >& ...

[1] - Done csh -f p_manage_27_a USM01,1,000000000,999999999,2,p_manage_27 1 >& ...

Exiting due to job suspension. ((
end

When you see “Exiting due to job suspension”, you will find that a $data_scratch/p_manage_nn.err file has been written.

Going to the usm01 $data_scratch we see these files:

-rw-rw-r-- 1 aleph aleph 1700 Feb 26 12:05 z101_dmp_ora.log.1

-rw-rw-r-- 1 aleph aleph 3550 Feb 26 12:07 p_manage_27_a_2.log

-rw-rw-r-- 1 aleph aleph 636269 Feb 26 12:07 manage_27_1_2

-rw-rw-r-- 1 aleph aleph 315 Feb 26 12:09 z101_dmp_ora.log.4

-rw-r--r-- 1 aleph aleph 37256 Feb 26 12:12 run_b.1133

-rw-rw-r-- 1 aleph aleph 5731 Feb 26 12:13 file_list

-rw-rw-r-- 1 aleph aleph 572 Feb 26 12:13 ora_length_auto.log

-rw-rw-r-- 1 aleph aleph 405 Feb 26 12:13 z101.length

-rw-rw-r-- 1 aleph aleph 1097 Feb 26 12:13 dmp_to_ora_auto.log

-rw-rw-r-- 1 aleph aleph 1700 Feb 26 12:13 z101_dmp_ora.log.5

-rw-rw-r-- 1 aleph aleph 247 Feb 26 12:13 z101_dmp_ora.ctl

-rw-rw-r-- 1 aleph aleph 7337 Feb 26 12:13 p_manage_27_a_1.log

-rw-rw-r-- 1 aleph aleph 315 Feb 26 12:13 p_manage_27.err (
[image: image3.png]EXL@S Aleph

-rw-rw-r-- 1 aleph aleph 2409 Feb 26 12:13 p_manage_27.cycles

-rw-rw-r-- 1 aleph aleph 129536 Feb 26 12:13 manage_27_1_1

-rw-rw-r-- 1 aleph aleph 12335 Feb 26 12:13 p_manage_27_c.log

This is what we see in the p_manage_27.err file:

FAILURE Sun Feb 26 12:13:35 CST 2006 ==================

step 1

Cycle: 6

b_manage_27_a: Z101 create failure

Job Suspended !!!

To identify this error in your log files use the command:

grep "FAILURE Sun Feb 26 12:13:35 CST 2006" $data_scratch/*.log

Then do a grep to find the log file containing the error:

 lakepark> grep "FAILURE Sun Feb 26 12:13:35 CST 2006" $data_scratch/*.log

 /tmp/p_manage_27_a_1.log: FAILURE Sun Feb 26 12:13:35 CST 2006

Looking at the p_manage_27_a_1.log to see the error in context:

Load: /tmp/utf_files/exlibris/aleph/a16_2/usm01/tab/tab01.eng

Load: /exlibris/aleph/a16_2/usm60/tab/tab_expand

Killed

Sun Feb 26 12:13:35 CST 2006

FAILURE Sun Feb 26 12:13:35 CST 2006 ==================

step 1

Cycle: 6

b_manage_27_a: Z101 create failure

Job Suspended !!!

Exiting due to job suspension.

End

(In this case the log file doesn’t give us any additional info; in other cases, it often would.)

b. Subcase: “Only x indexes out of y … were created”

In some cases, the “Exiting due to job suspension” will be preceded by:

 Error : Only x indexes out of y for table Znn were created"

When the only problem with job is this Oracle index error, then you should run util a/17/2 to try to build the specific index which failed. (It may be that there was some temporary condition which caused the failure.)

The two most common causes of index creation failure are:

 (1) lack of space

 (2) (for an index defined as “unique”) duplicate keys

In the case of #1, you add space.

In the case of #2, you need to consider how many duplicates there are. This SQL will tell you:

SQL> select znn_rec_key from znn group by znn_rec_key having count(*) > 1;
(Note: the field which the index is built on and which is duplicated is often the znn_rec_key,… but not always.)

If the SQL shows just a few duplicates, you can note the record keys, delete them, and then re-send the records which generated the duplicates to the server.

If there are too many to delete / re-add like this, then you will need to determine the cause of the duplicates and re-run the job.

2. Diagnosing when there’s no “Exiting due to job suspension” message

Check (with util c/4) to see if the job left the library locked. If so, that indicates some kind of problem….

 If the job has a cycles file in the $data_scratch, do all of the lines and columns have a “+” in them? They should.

Since the ultimate goal of the indexing jobs is to create/update the Oracle tables (such as Z01, Z02, Z95, Z97, etc.) which constitute the ALEPH index, one of the best indications that the job has been successful is the presence of an appropriate number of “Load complete” messages with appropriate numbers of records.

In the normal case of single task (“load_mode = DIRECT”)

grep 'Load completed' will show you the relevant occurrences:

>>grep 'Load completed' SYS02_p_manage_01.log

Load completed - logical record count 0.*
Load completed - logical record count 49501.

Load completed - logical record count 50000.

Load completed - logical record count 50000.

…

Load completed - logical record count 1209295.

Load completed - logical record count 1842549.

Load completed - logical record count 2217903.

<etc.>

* Note: The first “Load completed” in p_manage_01 is for the z970, which is not present at most sites and always gets “logical record count 0”.

Some jobs can sometimes correctly load zero records for certain steps and if you have "holes" of 1,000+ records in your database you can have cycles which will load fewer or no records, but, generally, for cycles of the same kind you should see similar "Load completed" numbers.
Note: a “two-task” environment (where the Oracle data is on a separate server) is different. In this case the log will have:

. . . load_mode = NONDIRECT option = go

and instead of a few “Load completed” messages, you will see hundreds of “Commit point reached” messages:

Commit point reached - logical record count 100

Commit point reached - logical record count 200

3. Other Diagnosis:

Here are some things to check if an indexing job is working or if it was successful:

· In the basic $alephe_scratch log (when the job is done) or in the xxx01 $data_scratch logs while it's running, do:

· grep -i 'error ' *p_manage_nn*log*

· grep -i 'error:' *p_manage_nn*log*

· grep -i 'fail' *p_manage_nn*log*

· grep -i 'extend' *p_manage_nn*log*

· grep -i 'exist' *p_manage_nn*log*

· grep -i 'duplicate' *p_manage_nn*log*

· grep -i 'space' *p_manage_nn*log*

· grep -i ' able' *p_manage_nn*log*

· grep -i 'unable' *p_manage_nn*log*

· grep –I ‘suspen’ *p_manage_nn*log*

(Or, all at once, on the same line:

/usr/xpg4/bin/grep -i -e extend -e exist -e duplicate -e fail -e ' able' -e space -e 'error ' -e 'error:' -e unable –e suspen *p_manage_nn*log* .)

· Did it leave the Library locked? (This usually indicates a problem.)

· Run util f/4 on the file it was supposed to create: Do you see records? Are they in order?

· Do util a/17/14 --are the Oracle indexes for the table(s) present and valid?

· Do an sql record count: "select count(*) from znn" --is the count what you expect?

 For manage_01:

 The z95 record count should be approximately equal (+ or – 10%) to the number of doc records. The z97 and z98 should each have at least 1 meg per 1,000 bibs .

3a. p_manage_17

p_manage_17 is a bit different than other indexing jobs in that it doesn't load records (so you don't see "Load completed" or "Commit point reached" messages).

The following indicate success:

 1. The $data_scratch p_manage_17.cycles file has all "+"s.

 2. grep -i error *manage_17* in $data_scratch shows no errors

 3. in util g/2, the last-long-acc-number = the last-acc-number
[image: image3.png]

2

