
EAD, Primo and a data
management hub

Lukas Koster

Library of the University of Amsterdam

IGeLU 2016

Developers Day

DataMaze: What’s the problem?

Moving and manipulating (meta)data between
systems and datastores

Data
redundancy

Data

manipu

lation

System
interdependency

Fragmented
discovery

Harvesting
& indexing

Federated
search

ht
tp

s:
//

w
w

w
.fl

ic
kr

.c
om

/p
ho

to
s/

30
79

35
52

@
N

04
/6

23
77

65
13

1/

Ghost
busters!

http://www.slideshare.net/lukask/datamazed-with-notes

The problem is the heterogeneous and complicated information infrastructure of the
library.
Huge amounts of time and effort are spent on moving data from one system/database
to another and shoehorning one record format into the next, only to fulfill the
necessary everyday services of the university library.
This creates critical system interdependencies, data redundancies and proprietary
data transformation configurations.
See my earlier ELAG 2015 presentation “DataMazed”.

ETL: Extract Transform Load

Transformation is mostly done with utilities that
belong to a specific system/tool.

Proprietary transformation and storage

Multiple data formats and transformation tools

The process of getting data from one system/database to another is referred to as
ETL: Extract - Transform - Load.
All three parts are usually executed with proprietary, system-specific tools and utilities.
ETL is the most time and resource consuming portion of the total data infrastructure
management organisation.

DataMap - Data Exchange

http://commonplace.net/2014/11/library-data-flows/

One result of our Dataflow Inventory project was the DataMap repository, in which we
describe all systems and (virtual) databases and the dataflows between them.
Including the data formats, data units and transformations.
This is only a small part, diagram of a subset of this DataMap repository. DataMap
makes very visible, that there are numerous individual, parallel, partly overlapping
system and/or data format dependent ETL processes.

“Not only is it not possible to invest time and effort productively in innovative
developments, but this fragmented system and data infrastructure is also completely
unsuitable for fundamental innovation. Moreover, information provided by current end
user services is fragmented as well. Systems are holding data hostage.”

Dependency on systems provided by one or a few companies is sometimes referred
to as “vendor lock-in”, something that we need to avoid, we are told. In reality
however, there is not much else. We are always dependent on one or more system
and database providers (not only commercial ‘vendors’, but also local developers and
free and open source software communities). Better to speak of “systems lock-in”
(also referred to as “silos”).
Anyway, from a system management and efficiency perspective ‘vendor lock-in’
appears to be better than the chaotic multi system and silo environment. This does
not mean that you won’t have any problems, but you don’t have to solve them

yourself. From the innovation perspective however, this is not the case. But in my
view there is not much difference here with a fragmented infrastructure.

It would however be great if we can free the data, in such a way as to minimalize (not
eliminate) these dependencies, which would also lead to more efficient and innovative
investment of people, expertise and funding.

Alternative: central data hub

http://commonplace.net/2015/08/maps-dictionaries-guidebooks/

One of the possible alternatives, which we are testing now in a separate pilot project,
is a central Data Hub, with some kind of universal and open data format.
The idea is that all transformations are done using one universal tool, and all resulting
data is stored and linked in one universal data format.
The Extract and Load procedures may partly still be dependent on the source and
target systems/databases/services.

One of the advantages would be that it will be a lot easier to migrate systems.

Not only existing legacy systems can then get the data from this hub, but also many
new services.

A far-away future might be that libraries will use only one central data hub with
sources and targets plugged in.

DataHub Advantages

System/vendor independent

Single tool for all data transformations

Migration of systems is easier

(Elimination of redundancy)

Theoretically, the advantages of such a universal Data Hub are:
- It is independent of systems/vendors (except of course of the Data Hub

itself….)
- You only need knowledge of and expertise in one transformation tool
- Migration of systems would be easier because the data transformations will

remain available, without having to redo these in the new systems
- On the long run: it should be possible to store all your data of all your content

in one place, once, in a reusable format.

DataHub Requirements

Central linked storage

Universal data format

Data transformation routines

Support for import/export common data formats

Scheduled batch processing

As mentioned before, the requirements of a central Data Hub are:
- Central linked storage
- Universal data format
- Data transformation routines
- Support for import and export (in many ways) of common and proprietary data

formats
- Last but not least: scheduling all these ETL tasks in batch: no need for manual

fiddling

CORE Pilot: Use Case

Connected Open Relations Exchange
Central Online Reference Engine

Controlled Object Registry Environment
Consolidated Ontology Range Ecosystem

We started a pilot project, as mentioned.
Name: CORE (because everybody else already uses “HUB”, like our new library file
sharing environment based on SharePoint). CORE can mean anything, whatever you
like.
Focusing on a real life practical challenge: getting EAD formatted collection/archives
data into Primo PNX, preferably linked to related information from our Aleph ILS.

The problem is: we’re still in the preliminary phase, testing tools etc. Also our
collections system/database environment is changing. So there is not much to show.
Only a description of the context, the issues and the possible routes.

EAD - Encoded Archival Description

Hybrid format:

● Collection/Archive level
● Nested sub-levels - Items

Focused on Describing, Displaying Collection
structure

Variations within standard structure (MARC!)

EAD2 -> EAD3 Differences

EAD is just like MARC a proprietary data format, targeted at just one type of content
and just one type of display/ end user environment. Both are not suited for generic
discovery tools like Primo. And here we have the core problem of our current library
information infrastructure: Introverted systems. Legacy workflows.

Just like MARC, EAD is a display format that is incorrectly used as a storage format.

Actually, EAD does not describe one type of content (although it does for archivists) it
is a hybrid format: both a single collection level in one EAD file, and multiple
multi-level containers and objects, that make up the collection.

Just like with MARC (AACR2, RDA), you can have cataloguing rules, for instance
ISAD(G). And just like with MARC every user can implement their own interpretation.

To make the situation complete, there is currently a major upgrade from EAD2 to
EAD3, with a number of substantial differences.

EAD: http://eadiva.com

Besides the official LoC EAD pages https://www.loc.gov/ead/ I find this EADIVA site
very helpful, maintained by Ruth Kitchin Tillman, of Notre Dame Hesburgh Library.
EAD is written in XML, a hierarchical data format structure

Just like MARC it has a Control section, and then a Content section with separate
sections for the Collection, and the Containers/Objects

https://www.loc.gov/ead/

EAD Collection Level

Line Break!

Line Break!

An example of an actual University of Amsterdam Collection EAD.
Some remarks:

- relatedencoding=”dublin core”, meaning “If only the <control> element (not the
entire finding aid) is going to be mapped to a particular standard such as
MARC or Dublin Code, this is where one would specify it.”

- <lb/>: a pure display directive! “Line Break”. Confuses Primo Normalization
Rules!

- <descrules>ISAD(G)</descrules>: enumerates any “rules, standards,
conventions, and protocols used in preparing the description.” (Deprecated in
EAD3, now: “Use <conventiondeclaration> or <localtypedeclaration> for more
controlled forms of citing conventions used in writing the description.”

http://eadiva.com/conventiondeclaration
http://eadiva.com/conventiondeclaration
http://eadiva.com/localtypedeclaration
http://eadiva.com/localtypedeclaration

The same data, now in the (home grown) collection system display. In Dutch
obviously.
The left side is based on the <eadheader>/<filedesc> and the <archdesc>/<did> etc.
parts of the EAD file.
The right side (ToC) is based on the <archdesc> and multi-level container parts.

EAD: Levels

An example of the multi-level EAD section:
<dsc> and nested <c0> - <c12> levels.
If the value of the “level” argument = “file” it describes an actual object.
The <daoloc href=” argument contains not a full link/URL/URI, but only the identifier
part. The full link has to be constructed with some base-url.

The EAD data from the multi-level section, first top level: in the collection system
display.

EAD to Primo PNX

Collections and/or Items?

Hierarchy?

Flatten data structure

Use Primo Normalization Rules

One-dimensional Primo display (until now)

In current Primo there is basically a flat record structure, describing individual items.
There is a very simple Whole/Parts implementation (parts of a serial) with linked
internal ID’s.
Getting the collection level into Primo is relatively easy. But that doesn’t apply to the
multi-level structure.
It is not possible to use Primo Normalization Rules to traverse all XML levels, as far
as I know. Most libraries that harvest EAD objects into Primo first flatten the EAD-files
to some other format (MODS, etc.).

EAD in Primo: Collection Level

<lb/>

<lb/>

Example of harvested Collection level EAD displayed in Primo.
Note again the <lb/> effect.

EAD in Primo -
Collection: PNX<lb/>

<lb/>

Example of the EAD file collection level in Primo PNX.
See the <lb/> tag that is ignored by Primo Normalization and can’t be referenced. So
it is just substituted by a NULL.

New Primo Collection Discovery

New in Primo: hierarchical Collection Discovery. Currently only for collection data from
Alma and Rosetta. Soon also for third party source systems.
All items are available as individual PNX records, with a new PNX link field that links
to the higher level object.
An additional Primo area (“Lobby”) is available for displaying the Collections as units.

Primo Collection Discovery

Introduces Collection Hierarchy within PNX

Uses API call to Source System for Hierarchy
structure

Primo Collection Discovery still uses the one-dimensional data structure in PNX, but
adds display hierarchy using on the fly API calls to the source system.

Primo Collection Discovery: pnx fields

Implementation of collection hierarchy in PNX.
Field “Collection Discovery”: control/colldiscovery.
Holds Type of record ($$T), ID (collection or parent collection; $$D), Institution ($$I).

DataHub Requirements

Central linked storage

Universal data format

Data transformation routines

Support for import/export common data formats

Scheduled batch processing

For EAD/Collections in Primo:

API: hierarchy structure

To come back to our initial DataHub requirements: for our specific Primo Collection
hierarchy need we have to add the option of getting the hierarchy structure through an
API call.

DataHub Tools

d:swarm

Catmandu

Heidrun/Krikri (DPLA)

Supplejack (DigitalNZ)

etc...

Now, that was the context and background. Next step was: looking for and selecting
tools for implementing a Data Hub.
There are a number of tools and projects out there. Some of them dedicated for a
specific project, like DPLA, DigitalNZ. Probably also Europeana has a tool.

DataHub Tools

d:swarm

Catmandu

Heidrun/Krikri (DPLA)

Supplejack (DigitalNZ)

etc...

We decided on looking closer at d:swarm and catmandu, because these tools are
open source, not dedicated for one specific project, and relatively easy to use.

http://www.dswarm.org

Open Source

d:swarm is developed by SLUB (Saxon State and University Library) in Dresden,
Germany, together with Avantgarde Labs).
Open Source.
It theoretically meets all the requirements for the data hub.
There are two versions:

- Streaming: no data storage, just ETL
- DataHub: with data storage

http://www.dswarm.org
http://www.dswarm.org

DataHub store: Neo4j Graph database

ETL: Graphical UI (Metafacture)

TPU/Backend: Task Processing Unit -
batch/scheduling…

API

Ne04J Graph database is used as the DataHub storage, where all imported data is
transformed to graph relations, and linked where obvious.

For Mapping and Transformation of data the graphical UI Metafacture tool is used.

It has TPU (Task Processing Unit) for batch processing of ETL procedures. And there
is an API.

Graphic UI: mapping, transformation

The d:swarm team was so kind to provide us with a temporary virtual installation on
their servers for free, for evaluating purposes.

Mapping of data from source to target is done in the graphical UI.
EAD can be handled as XML, with manual mapping.

Graphic UI: mapping, transformation

Data transformation is done in the graphical UI, with adding and specifying routines,
much like primo normalization rules.

No EAD (yet)

Many common import and export data formats are available, although not EAD. But
there is Primo PNX.

EAD-PNX results

<lb/>

Example of results of mapping the EAD collection level to PNX.
No object level yet (hierarchical/conditional mapping is not available as such).

Catmandu

http://librecat.org/Catmandu/

Command line tool - Open Source

Items: data units

Importers: CSV, JSON, MARC, XML, ALEPH, etc.

Exporters: MARC, JSON, RDF, CSV, ALEPH, etc.

Stores: MongoDB, CouchDB, ElasticSearch, etc.

Fixes: transformations

No EAD (yet)

No PNX(yet)

Catmandu, developed by University Libraries of Gent, Lund, Bielefeld. Open Source.
Fully command line operated.
Consists of many optional modules.
Many common import and export data formats, although not EAD and Primo PNX.
Storage is available via a number of tools.
Data transformations are performed using “fixes”, small modules that perform a single
operation.

http://librecat.org/Catmandu/
http://librecat.org/Catmandu/

Catmandu - EAD as XML

<lb/>

It is really easy to install Catmandu core and additional modules, using CPAN.

Again, EAD is imported in catmandu with the XML Importer.

Catmandu - XML to JSON

Data transformation from one format to another is easy using the available Exporters.
Here an example with JSON output.

Catmandu - XML to MongoDB to JSON

Also storing data is easy witt the Store modules. In this case XML to MongoDB, and
then exporting from MongoDB to JSON.

Catmandu - XML to MongoDB to YAML

The same example with YAML output.

Catamandu - Fixes

Data transformation: Fixes (functions)
Such as:

split_field(author, “,”)

marc_map(‘245’’, title)

remove_field(isbn)

substring()

viaf_read(‘number’)

xml_simple()

xml_transform()

In Catmandu, data transformations are done with available Fixes, or create your own.

Catmandu - Fixes

An example of data transformations: using the marc_map fix to map input fields to
MARC tags, and keep just one field using the retain_field fix.

CORE Project: Issues

Still in exploratory phase: tools evaluation

Good support from both tools’ developers

● d:swarm - Thomas Gängler and colleagues
● Catmandu - Patrick Hochstenbach and friends

Our CORe project issues: we still haven’t started the actual pilot. Still in preliminary
phase of evaluating and selecting tools.

Both d:swarm and Catmandu have many dedicated developers that are very willing to
give support.

CORE Project: Issues d:swarm

Graphical mapping tool: performance

EAD: no importer (yet)

Back end/TPU: not tested yet

The d:swarm graphical mapping tool currently has some performance and display
issues. This makes it hard to work with.
There is no EAD importer (yet). The d:swarm team is of course willing to develop one,
given the time etc. The hybrid hierarchical structure makes this not an easy task.

We haven’t had the time to test the batch processing yet.

CORE Project: Issues: Catmandu

Command line: fast!

Needs a lot of framework, scripting, etc.

EAD: not supported (yet)

PNX: not supported (yet)

Unlike the d:swarm graphical interface, the Catmandu command line is fast.
However you have to be very proficient in UNIX/Linux command line work to be able
to use it correctly and efficiently.
Of course for an actual DataHub this means putting together a vast and complex
framework of prepared scripts and batch processes. Which will take a lot of work and
resources to set up.
Neither EAD nor PNX is supported (yet), but the Catmandu community is willing to
develop importers and exporters for these data formats.

CORE Project: Issues - EAD

EAD hybrid multilevel structure: problematic

EAD is a presentation format (like MARC)

Amsterdam University Library internal project:

Assessing EAD workflows, starting September
2016

EAD is a data format has a number of issues too. We have already named most of
them. Most importantly: the hybris multilevel structure and the use of a display format
as storage and exchange format.

CORE Project: Issues - Primo

Collection Discovery for non-Ex Libris collection
management tools not available yet

Primo Collection Discovery is not yet available for third party collection/archive
systems, so we can’t test that at the moment.

Background image http://commons.wikimedia.org/wiki/File%3ATraquair_House_Maze.jpg

http://outlawjimmy.com/2013/04/24/thats-all-folks/

