

PSI – Scripts

Title: PSI scripts 1/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

Table of contents
The PSI programming language ..3

PSI program syntax ...3
Explanation of the syntax description ...7
Variables in PSI ...12
Functions of the PSI library ..14

I / O to file ..15
Input / Output (console) ...16
Conversion functions ...17
Mathematical functions ..17
System functions ..18
String functions ..19
Time and date functions ...20
Alephino functions (database access) ..20

The format string ..22
Program creation ...25

Include mechanism ..25
Program start ..25

Programming Alephino database services ...26
Example 1: ..26
Example 2: ..27

Title: PSI scripts 2/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

The PSI programming language

With PSI (Program Script Interpreter), Alephino 5.0 offers a universal programming interface with a
powerful range of functions. This is aimed at ambitious users who have already gained
programming knowledge in a syntactically similar language such as C / C ++ or Perl. PSI can be
used to create special reports, to analyze and edit data in the Alephino database file-wide according
to self-defined rules and much more

PSI program syntax

The syntax of a PSI program (list) is described in the BNF format. Letters, characters, and words
enclosed in apostrophe are terminal symbols and must be used in PSI programs in this spelling
without an apostrophe. The terminal '\ n' means line feed and corresponds to the RETURN or
ENTER key on the keyboard.)

list:
| list '\n'
| list defn '\n'
| list asgn '\n'
| list stmt '\n'
| list expr '\n'

asgn: VAR '=' expr
| VAR '[' expr ']' '=' expr
| ARG '=' expr
| ARG '[' expr ']' '=' expr

stmt: expr
| 'return'
| 'return' expr
| 'exit'
| 'exit' expr
| PROCEDURE '(' arglist ')'
| BLTINPROC '(' arglist ')'
| 'auto' locals
| 'while' '(' expr ')' stmt
| 'if' '(' expr ')' stmt
| 'if' '(' expr ')' stmt 'else' stmt
| '{' stmtlist '}'

stmtlist:
| stmtlist '\n'
| stmtlist stmt

expr: NUMBER
| STRING

Title: PSI scripts 3/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

| VAR
| VAR '[' expr ']'
| 'type' '(' VAR ')'
| 'dim' '(' VAR ')'
| ARG
| ARG '[' expr ']'
| asgn
| FUNCTION '(' arglist ')'

| BLTINFUNC '(' arglist ')'
| '(' expr ')'
| expr '+' expr
| expr '-' expr
| expr '*' expr
| expr '/' expr
| expr '%' expr
| expr '^' expr
| '-' expr
| '+' expr
| expr '>' expr
| expr '>=' expr
| expr '<' expr
| expr '<=' expr
| expr '==' expr
| expr '!=' expr
| expr '&&' expr
| expr '||' expr
| '!' expr

defn: 'func' FUNCTION '(' locals ')' stmt
| 'proc' PROCEDURE '(' locals ')' stmt

arglist:
| expr
| arglist ',' expr

locals:
| VAR
| locals ',' VAR

An arbitrary number of spaces is permitted between terminal symbols to increase readability. If '\ n'
is followed directly by a backslash (\), the line feed is ignored. The text after two slashes is
evaluated as a comment until the end of the line. The keyword 'quit' leads to the immediate
termination of the PSI program.

Title: PSI scripts 4/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

Syntax Description of terminal symbols not explained above:

NUMBER: Numeric constant according to the following scheme
(Expressions in square brackets are optional):

digits ['.'] [digits] [exp] [sign] [digits]
or
'.' [digits] [exp] [sign] [digits]

where: digits one or more decimal numbers ('0','1','2',...,'9')
exp exponent initiated with 'e' or 'E'
sign '+' or '-'

Examples: 1
3.12
.12
5.678e10
0.123E-6

There are some predefined constants (you can respond with their name):

 Name: Value: Meaning:
PI 3.14159265358979323846 pi
E 2.71828182845904523536 e
GAMMA 0.57721566490153286060 Euler-Mascheroni
DEG 57.29577951308232087680 deg/radian (== 180/PI)
PHI 1.61803398874989484820 golden ratio
UNDEF 0 undefined type (VAR)
NUM 1 numeric type (VAR)
STR 2 string type (VAR)
ANUM 3 numeric array type (VAR)
ASTR 4 string array type (VAR)
IN 0 fopen() file descriptor read
OUT 1 fopen() file descriptor write
EXT 2 fopen() file descriptor extend(append)
UPD 3 fopen() file descriptor update

STRING: Characters enclosed in quotation marks ("). Some special characters with a leading
backslash may be used in the string:

\b Backspace
\f Page feed
\n Line feed
\r Carriage return
\t TAB

Title: PSI scripts 5/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

\\ Backslash
\" Quotation marks (")
\ddd Octal character code ddd (d can take the values '0','1',...,'7')

A string can be continued in the following line if this is initiated with a backslash (\).

VAR:
FUNCTION:
PROCEDURE:

Expressions beginning with a letter and containing letters or digits. Reserved
expressions must not be used (if, else, while, return, auto, exit, proc, func, type, dim)
and BLTINPROC or BLTINFUNC function or procedure names. It is case-sensitive
("big" is not equal to "Big"). You should avoid using a global expression in various
VAR, PROCEDURE, or FUNCTION. Local variables (defined as 'auto' in stmt 'func' or
'proc') that have the same name as a global variable are hidden from the global variable.

Example:

number = 2
proc xyz() {
 auto number
 number = 1
}
xyz()
printl(number)

Output: 2

ARG: Used to an unnamed parameter a 'func' or 'proc' to address.

Syntax: '$'digits

Example: $1
$12

ARG $n denotes the n-th parameter of the function / procedure call. The first parameter
is $1.

Example:

func subtr() {
 return $1-$2
 } // Definition

a = subtr(2,5) // a becomes -3
printl(a) // Output from a

Title: PSI scripts 6/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

BLTINFUNC:
BLTINPROC:

One of the "built-in" functions from the PSI function library.
The available library functions are described in the appendix.
One distinguishes between functions that return a value as a function result, and
procedures that return no value.

Explanation of the syntax description

What is the meaning of this very formal description of a PSI program that should only be
immediately intelligible to computer scientists?

Let's look at first on how a PSI program (a "list") may be constructed:

• Empty (/ * nothing * /)
or

• A list, followed by a line feed (list '\ n')
or

• A list, followed by a definition and a line feed (list defn '\ n')
or

• A list, followed by an assignment and a line feed (list asgn '\ n')
or

• A list, followed by a statement and a line feed (list stmt '\ n')
or

• A list, followed by an expression and a line feed (list expr '\ n').

Perhaps you have already noticed that a list - apart from the first rule - is always partly explained by
"itself". This allows you to use one of the other descriptions for "list", which leads to a sequence of
statements, assignments, etc., which finally make up the PSI program.

Now one has to look, whereby the other terms such as statement, allocation etc. are replaced, and
then their building blocks again etc. Thus finally makes a PSI program.

An assignment (ASGN) can be:

• A variable gets a new value (VAR '=' expr) or
• An indexed array variable ("array") gets a new value (VAR '[' expr ']' '=' expr) or
• An argument gets a new value (ARG '=' expr) or
• An indexed argument field gets a new value (ARG '[' expr ']' '=' expr).

The index of a field begins at 0. Only one-dimensional fields are allowed.

A statement (stmt) can be:
• An expression (expr)

or
• A return statement from a procedure ('return')

or

Title: PSI scripts 7/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

• A return statement with a value, a function ('return' expr)
or

• The exit from a PSI program ('exit')
or

• An exit with a value, from a PSI program ('exit' expr)
or

• The call of a user-defined PROCEDURE with possible arguments (PROCEDURE '(' arglist
')')
or

• The calling of a library procedure with possible arguments (BLTINPROC '(' arglist ')') or
• The definition of local variables within a user defined PROCEDURE / FUNCTION ('auto'

locals)
or

• A 'while' command that executes a stmt as long as an expression is true (ie, not null) ('while'
'expr') stmt)
or

• An 'if' command that executes a stmt if an expression is not null ('if' ('expr') 'stmt)
or

• An 'if' command that executes the first stmt if an expression is not null and executes the
second stmt if the expression is null ('if' 'expr' stmt 'else' stmt)
or

• A statement list enclosed in braces ('{' stmtlist '}').

A statement list (stmtlist) can be:
• Empty (/ * nothing * /)

or
• A statement list followed by a line feed (stmtlist '\ n')

or
• A statement list followed by a statement (stmtlist stmt).

An expression (expr) may be:
• A numeric constant (NUMBER)

or
• A string constant (STRING)

or
• A variable with a value (VAR)

or
• An indexed variable field with a value (VAR '[' expr ']')

or
• A function that determines the type of a variable and returns UNDEF, NUM, STR, NUM,

and ASTR ('type' ('VAR'))
or

• A function that determines the size of a field and returns the number of field entries ('dim' '('
VAR ')')
or

• An argument with the value (ARG)

Title: PSI scripts 8/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

or
• The indexed element of an argument field with a value (ARG '[' expr ']')

or
• An assignment (asgn)

or
• A function defined by the user which is called with arguments (FUNCTION '(' arglist ')')

or
• A PSI library function called with arguments (BLTINFUNC '(' arglist ')')

or
• An expression enclosed in brackets ('(' expr ')')

or
• An arithmetic expression (see below)

or
• A relational expression (see below)

or
• A logical expression (see below).

An arithmetic expression may be:
• Add numbers (expr '+' expr)

or
• Linking string strings (expr '+' expr)

or
• Subtract (expr '-' expr)

or
• Multiply (expr '*' expr)

or
• Dividing (expr '/' expr)

or
• Modulo (expr '%' expr)

or
• (Expr 'expr)

or
• For example, UNARYMINUS ('-' expr)

or
• Without effect, eg UNARYPLUS ('+' expr).

Note:
The expressions "S1 + S2" and "strcat (S1, S2)" have the same effect when S1 and S2 are both
character strings. Other arithmetic operators accept only numeric expressions.

A relational expression is true (1) if:
• The first is greater than the second (expr 'expr)

or
• The first is greater than or equal to the two (expr '> =' expr)

or
• The first is less than the second (expr 'expr)

Title: PSI scripts 9/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

or
• The first is small or equal to the second (expr '<=' expr)

or
• The first is equal to the second (expr '==' expr)

or
• The first is not equal to the second (expr '! =' Expr)

And 0 (FALSE) if not.

Note:
The expressions "S1 RELOP S2" and "strcmp (S1, S2) RELOP 0" produce identical results when
S1 and S2 are both string strings, and the RELOP is one of these relational operators:

'>', '>=', '<', '<=', '==', or '!='.

A logical expression is 1 (TRUE) if:
• The first and second is not 0 (expr '&&' expr)

or
• The first or the second is not 0 (expr '||' expr)

or
• The expression 0 is ('!' Expr).

And 0 (FALSE) if not.

Note: Logical operators only allow numeric expressions as arguments.

The ranking of arithmetic, relational and logical operators:

Associativity: Operator:

Right to left ^
Left to right UNARYMINUS UNARYPLUS!
from left to right * / %
Left to right + -
Left to right > >= < <= == !=
from left to right &&
Left to right ||
Right to left = (assignment)

Associativity "right to left" means,
That "a ^ 2 ^ 3 ^ 4" equals "a ^ (2 ^ (3 ^ 4))".

Associativity "left to right" means,
That "a * 2 * 3 * 4" is equal to "((a * 2) * 3) * 4".

Title: PSI scripts 10/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

Definitions (defn) FUNCTION or PROCEDURE begin with the word 'func' or 'proc' followed by a
function / procedure name, optionally included with a list of named arguments in parentheses, and
close with a statement from. Named arguments are a reference to type ARG. The following,
differently defined functions are the same from the functionality:

(a, b, c)} // Named argument
Proc myproc (a, b, c) {print ($ 1, $ 2, $ 3)} // ARG type
Proc myproc () {print ($ 1, $ 2, $ 3)} // ARG type
(a, b, c) {print (a, $ 2, c)} //

If no argument references are used, only argument types $ n are allowed

Title: PSI scripts 11/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

Variables in PSI

First, in PSI, there are simple variables and variable fields, so-called arrays. Only one-dimensional
variable fields are allowed. You access the individual elements of a variable field by specifying an
"index value". The first element always has the index 0, the last the index n-1 if n is the number of
elements in the variable field.

Example: a[3] returns the 4th element of the variable field a.

You can determine the number of elements of a variable field with the "Dim" command:

Example: anz = dim(a) uses the variable anz with the value of the number of elements of a.

Variables are generally global in PSI, so if you assign a value to a variable, it is available in the
entire program. Exceptions are, however, in the form of local variables that are valid only within a
procedure / function:
is in the subroutine a variable declared using "auto", then assignments and references refer to the
local variable, even if it is "outside" is a variable of the same name.
Variables are not declared in PSI; Data of which type they are accommodated results from the use
of the variable: if it is assigned a numerical value, it becomes a numeric variable; if it is assigned a
string, it becomes a string variable. This property of a variable can change dynamically even during
program execution. With the PSI-command "type" you can find out, what type a variable is just.
(See examples).
A simple variable can become a variable field and vice versa. However, all elements of a variable
field must be of one type. Therefore, you can not assign a string to an element of a numeric variable
field.

Examples:

 type(n) // output 0 (UNDEF)
 n = 1 // variable becomes numeric
 type(n) // output 1 (NUM)
 s = "strg" // variable becomes string
 type(s) // output 2 (STR)
 b[0] = n // b becomes numeric array (n = 1)
 type(b) // output 3 (ANUM)
 b[1] = 3 // OK, b is numeric array
 dim(b) // Output 2 (2 elements in b)
 c = b // copies array b into array c
 type(c) // output 3 (ANUM)
 b[2] = s // ERROR! b is numeric array
 b = 1 // b is not longer an array
 type(b) // output 1 (NUM)
 b[2] = s // b becomes string array
 type(b) // output 4 (ASTR)
 dim(b) // output 3 (3 elements in b)
 c = b // c becomes string array
 type(c) // output 4 (ASTR)
 n // output 1 (value of n)
 s // output "strg" (value of s)
 func iseven(s) { // output 1 if s is even;
 // argument s is invisible for global s!

Title: PSI scripts 12/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

 printl("glob ",n) // output of value of the global n
 auto n // local n is from here invisible for global n
 n = s ^ 2 + 1 // example for local variable and named argument
 printl("lok ",n) // print value of local variable
 if(($1%2) == 0) { // is s even ?? ($1 corresponds to the argument)
 return 1 // yes -> iseven() returns 1
 } else { // this must be in the same line!
 return 0 // no -> iseven returns 0
 }
 } // end of 'func' definition
 iseven(13) // output 0 (uneven number)
 iseven(18) // output 1 (even number)

 n // output 1 (global n not modified)
 s // output "strg" (global s not modified)

 // Definition of the faculty (n!) With recursive call
 func fac(n) if (n <= 0) return 1 else return n * fac(n-1)
 i = 0 // initialization of a variable

 while(i < 10) { // as long as i is less than 10
 printl(i,":\t",fac(i)) // print faculty of i
 i = i + 1 // increment i by 1.
 }

Title: PSI scripts 13/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

Functions of the PSI library

The following expressions are used to describe the PSI library functions:

Xi Type of any (i is a digit or not used)

Ni Type numeric (i is a digit or not used)

Si Type string (i is a digit or not used)

Ai Type number array (i is a digit or not used)

Li Type string array (i is a digit or not used)

For example, the expression "N func (N1, N2)" means that the func function expects two numeric
types as parameters, and provides a value of the type numerically. A "-" sign before the name of the
library function means that no result value is returned, ie it is a procedure.

The term "stdin" denotes the standard input of the PSI interpreter. At runtime of a PSI program, this
is the keyboard.
The following is a list of the functions built into the PSI interpreter, grouped by function classes.
You can use these features for your own PSI scripts.

Title: PSI scripts 14/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

I / O to file

You can use up to 10 files at a time. From the PSI level, the various files are accessed via an index
number (handle), which can have a value of 0 ... 9. This index number is meant when "handle" is
used in the following text.

- fclose (N1) Close the file with the handle N1.

- fdelete (S1) Deletes the S1 file.

N feof (N1) Returns 1 at end of the file of the file with the handle N1
(Returns 0 if the end of file has not been reached).

N ferror (N1) Returns 1 if an error occurs during the writing / reading of the
file occurred with the handle N1 (0 if no error occurred).

N fok (N1) Returns 1 if the end of file has not been reached and no error
during the writing / reading of the file with the handle N1
occurred (0 if an error occurred). The function corresponds to
the command
"(! feof (N1) &&! ferror (N1))", but is faster.

Example: Lists of the file TEST.TXT (in the directory "bin")
fp = fopen ("TEST.TXT", IN)
while (fok (fp)) print (fgets (fp))
fclose (fp)

N fopen (S1, N1) Open the file S1 with the access type N1. Valid values for N1
are here:
IN for reading
OUT for writing
EXT to expand (append to file end)
UPD for reading and writing

The return value (file index, short handle) must be in
functions that evaluate this index used. The file must be closed
at the end of the program at the latest.
A maximum of 10 files can be used simultaneously.

- fprint (X1, ..., N1) Writes arguments X1, ... in the file with the handle N1.

- fprintf (S1, X1, N1) Writes argument X1 formatted in the file with the handle

Title: PSI scripts 15/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

N1. The format description for S1 can be found in the "Format
character string" section.

- fprintln (X1, ..., N1) Like fprint (), but with line feed at the end.

- rename (S1, S2) Rename file S1 to S2

S fgets (N1) Reads a string from the file with the handle N1.

N fexist (S1) Returns 1 (true) if the file exists named S1, the other if 0th

- fcopy (S1, S2) Copy file S1 to S2

mkdir (S1) Generating directory named S1

L dir (S1) Lists contents of the S1

Input / Output (console)

With these library functions, you control the output on the screen and the input from the keyboard.

- print (X1, ...) Output of the arguments X1, ... on the screen or the log
file of the job.

- printf (S1, X1) Formatted output of the argument X1 on the screen or the log
file of the job.
The format description to S1, refer to the section "Format
String" after.

- printl (X1, ...) N Like print (), but with line feed at the end.

N scan () Reads a number of stdin.

S scans () Reads a string of stdin.

Title: PSI scripts 16/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

Conversion functions

N num (S1) ASCII code of the first character of S1.

S str (N1) Returns ASCII N1 as a string.

N strtod (S1) Converts a string to a numeric value. Permissible content of
S1 comes from the set of numbers "0123456789".

Mathematical functions

N abs (N1) Absolute value of N1.

N acos (N1) Arc cosine of N1 (with -1 <= N1 <= 1).

N asin (N1) Arc sine of N1 (with -1 <= N1 <= 1).

N atan (N1) Arc tangent of N1.

N atan2 (N1, N2) Arc tangent of N1 / N2 (with N1 and N2 is not 0).

N cos (N1) Cosine of N1 (in radians)

N cosh (N1) Cosine hyperbolic of N1.

N exp (N1) Exponential function of N1 variable. (Corresponds to "E ^
N1", E is defined globally.)

N int (N1) Integer part of N1 (eg int (3.14) 3).

N log (N1) Natural logarithm of N1 (with: N1> = 0).

N log10 (N1) Logarithm to the base 10 of N1 (with N1> = 0).

N sin (N1) Sine of N1 (in radians).

Title: PSI scripts 17/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

N sinh (N1) Hyperbolic sine of N1.

N sqrt (N1) Squareroot of N1.

N tan (N1) Tangent of N1 (in radians).

N tanh (N1) Hyperbolic tangent of N1.

System functions

- writeparm (S1, S2, S3) Changes the parameters in S2 S1 block the configuration file
etc / alephino.cfg to the value S3. If the parameter
already exists, the existing value is replaced; Otherwise a new
entry is created.
Example:
Writeparm ("Communication", "Port", 4711)

S readparm (S1, S2) Returns the contents of the entry of the parameter S2 in block
S1 of the configuration file etc / alephino.cfg back.

- setup (N1, N2, N3) Setting the PSI environment:
Size stack (N1),
Maximum program size (N2),
Max. Call interleaving (N3).
If N1, N2, or N3 are set to 0, preset values are taken. These
are: setup (256,2000,100)

A sort (X1) Writes the index of the field X1 ranked in A.

N index (X1, X2) Returns the index of the field with the key X2 back in box
X1. If the key is not found, -1 is returned.

S getparm (S1) Supplies contents of the batch parameter S1.

Title: PSI scripts 18/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

String functions

S sprint (X1, ...) Writes one or more arguments X1, .. in S.

S sprintf (S1, X1) Writes an argument X1 formatted string S1 is returned in S.
The format description to S1, refer to the section "format
string" after.

S sprintl (X1, ...) Like sprint (), but with line feed at the end.

S strcat (S1, S2) Insertion of S1 and S2.

N strcmp (S1, S2) Compare two string strings.
Returns a number greater than or equal to 0 depending on
whether S1 is greater than or equal to S2.

N strlen (S1) Length of the string S1.
Example:
strlen ("asdf") returns. 4

S tolower (S1) Converts the letters of the string S1 into lowercase letters and
returns the result in the string S

S toupper (S 1) Converts the characters of the string S1 to uppercase and
returns the result in the string S.

S strrpl (S1, S2, S3) Replaced in S1 the first occurrence of S2 is replaced by S3.
Returns the modified string.
Example:
strrpl ("Pi: & 1", "& 1", sprint (PI))
returns string "Pi: 3.1415927".

N strstr (S1, S2) The position appears on the S2 as a substring of S1. Returns
-1 if S2 is not contained in S1 and has a value greater than or
equal to 0 as the position of the first character of S2 in S1.
Example:
strstr ("asdfas", "as") returns 0
strstr ("asdfas", "df") returns 2, and
strstr ("asdfas", "qw") returns -1.

S strsub (S1, N1, N2) Returns a substring of S1 starting at position N1 having the

Title: PSI scripts 19/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

length of N2. If N2 is longer than S1, automatically the
length of S1 is assumed.
Example:
strsub ("asdfas", 1,3) returns "sdf"
strsub ("asdfas", 2,100) delivers "dfas".

L split line (S1, S2) Splits the string S1 on the basis of the separator string S2.
Returns a field with the extracted parts.

L splitregex (S1, S2) Splits the string S1 on the basis of the regular expression S2.
Returns a field with the extracted parts.

S transl (S1, S2) Converts the character set of the string S1 according to the
Translate table defined by S2. This must correspond to an
entry defined in label TRANSL = in the server generation.
Example:
transl ("exercise", "ISOTOEXT") returns
"exercise" in UTF-8 encoding (eg for writing into the
database).

Time and date functions

N clock () System time in seconds.

S date ([S1]) System date in the format "DD.MM.YYYY HH: MI: SS". If a
parameter is specified S1, this is rated as a format string.

S datadd (S1, N1) Add (or subtract) the number of days N1 to (from) Date S1.
S1 must be in the format "YYYYMMDD".

Alephino functions (database access)

N find (S1) Search in the Alephino database. Returns the number N of
result sets. S1 comprises the following components:
POOL= <Data pool shortcut> (optional)
FILE= <abbreviation of master file>
QUERY= <Query in CCL syntax>

Examples:

Title: PSI scripts 20/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

POOL=B FILE=BEN QUERY=NAM=Meier *
Returns all users named Meier

FILE=TIT QUERY=SWT=Economy and JHR=1995
Provides all titles with keyword economy and year of
publication 1995

N get (S1) Search in the Alephino database via link between tables.
Returns the number N of result sets. S1 comprises the
following components:
POOL= <Data pool shortcut> (optional)
FILE= <abbreviation of master file>
IDN= <Ident number of the link's source record>
or:
SET= <number of a result set
NUMBER= <index of the link's source record in the

set (starting at 1)>

and:
LINK= <link aspect that points from the source to

the desired target record type>

Examples:
POOL=B FILE=BEN IDN=123 LINK=VBU
Returns all active loans of the user with ID

number 123.

SET=5 NUMBER=2 LINK=TIT
Suppose the set no. 5 contains author sets, all titles of the 2nd
author are returned.

A getset (N1) Returns the list A of the ID numbers contained in the set N1.

N getrec (S1) Read record. Returns the number N of record-handles or a
(negative) error code. Up to 10 records can be used at the
same time. S1 comprises the following components:
POOL= <abbreviation of the data pool> (optional)
FILE= <abbreviation of the master file>
IDN= <Ident number of the record>
or:
SET= <number of a result set
NUMBER= <index of the desired record in the set

(starting at 1)>
Examples:
POOL=B FILE=ORD IDN=8719
Returns the order number with ID number 8719.

SET=8 NUMBER=7

Title: PSI scripts 21/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

Returns the 7th set from the result set #8 (The information
about the data pool and the master file are included in the set.)

N imprec () Reads the current record from the global record buffer of the
Alephino Export / Import. Returns the number N of a set of
handles or a (negative) error code.

S getfld (N1, S1) Returns the contents of the field named S1 from the data set
with the handle N1.

- putfld (N1, S1, X1) Writes the number or string X1 in the field S1 of the set with
the handle N1.

- delfld (N1, S1) S1 Deletes the field from the set with the handle N1.

N addrec (N1, S1) New record with handle N1 will be added to the database.
Returns the ident number of the record. S1 contains the
components:
POOL= <Data pool shortcut> (optional)
FILE= <abbreviation of the master file>

- updrec (N1) Writes the record with the handle N1 in the database.

- delrec (N1) Deletes the record with the handle N1 from the database.

- exprec (N1) Writes the record with handle N1 to the global record buffer
for the export / import.

- freerec (N1) Releases the record (the record handle) N1.

N initrec () Allocates a record handle (for a new record).

The format string

A format string for sprintf (), fprintf (), and printf () is a string containing printable characters and a
format description consisting of different fields as described below. (Fields in square brackets are
optional):

%[Mark][Min][.[Max]]Type

Title: PSI scripts 22/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

Description of the fields in the format description:

Field: Meaning:

Mark One or more of these characters -, +, #, or a space (see below).
Min A number representing the minimum number of expressions value.
Max A number representing the maximum number of the expression value.
Type A letter that describes the type of the printed variable. (see below)

The field mark of Format Description:

Mark: importance Default setting

- Left-aligned edition Right-aligned edition

+ If the output is a numeric
value, the sign + or - is output
before the number.

Only for a negative number
will be output - before the
number.

<Space> Positive numbers are filled
with spaces on the left-hand
side.

No spaces are output.

If the type %e, %E or %f is
output, a decimal point is
output.
The type %g or %G is output
with decimal point and
terminating zeros.

A decimal point is only issued
if numbers follow.
Concluding zeros are
suppressed, a decimal point is
only output with subsequent
numbers.

The field type of format description:

Type argument Resulting output format

e number Signed value in scientific format
Example:
-123.4567 is output as -1.234567e + 002 when %e is used

f number Signed value, (sign) (numbers). (Numbers)
Example:
-123.4567 is output as -123.456700 when %f is used

Title: PSI scripts 23/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

g number Signed value in the format% e or% f. The output as short as
possible is output after the maximum "Max" and the contents.

s String Output of a string

In all output functions / procedures where the output format has not been explicitly specified, the
format "% .8g" is used for numbers and the format "%s" is used.

Title: PSI scripts 24/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

Program creation

Include mechanism

To provide frequently used functions for reuse in separate files, instead of copying their source text
into your current PSI program, PSI contains a statement of the form:

#include <PSIsource.psi>

PSIsource.psi is the name of the include file. This is understood, including, if necessary, the
preceding path, is optional, but may not contain more than 100 characters.
The label #include must be at the beginning of the line, the filename must be enclosed in angle
brackets.

Program start

The starting point is the specification of a program name (procedure or function) without function
bodies.
Usually a function call main () exist at the end of the source code, which refers to a previously
defined function with the same. However, the name main () for the start procedure is not mandatory.

Title: PSI scripts 25/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

Programming Alephino database services

Example 1:

Assumed you have an Excel file (format .csv) that contains person data separated by semicolons.
Each line contains the personnel number, the first name, last name and the date of birth of a person
in the format DD.MM.YYYY. From this, Alephino user master data are to be generated. The data is
encoded in the ISO Latin1 character set.

proc main() {

 print ("We are reading our csv-file...")

 fp = fopen("persons.csv", IN)

 if (!fok(fp)) {
 printl ("Unable to read file")
 }

 recno = 1
 while (fok(fp)) {
 line = fgets(fp)
 columns = splitline(line, ";")
 maxcols = dim(columns)
 if (maxcols > 2) {
 printf("=============== Record No.=%.f ==================", recno)
 recno = recno + 1
 name = transl(columns[2], "ISOTOEXT") + ", " + transl(columns[1],
"ISOTOEXT")
 record = initrec()
 putfld(record, "100", columns[0])
 putfld(record, "102", name)
 putfld(record, "105", strsub(columns[3], 6, 4) + strsub(columns[3], 3, 2)
+ strsub(columns[3], 0, 2))
 idn = addrec(record, "POOL=B FILE=BEN")
 print("Adding user " + name + sprintf(" with IDN %.f", idn))
 freerec(record)
 }
 }
 fclose(fp)
}

main()

Our program uses print () output, which you then find in the job log, for example:

JOB 000035 RUN_PSI 2013/10/16 15:56:14 START
2013/10/16 15:56:14 SCRIPT=beispiel1.psi SAVE=Y

We are reading our csv-file...
=============== Record No.=1 ==================
New user Graca, Maria with IDN 2
=============== Record No.=2 ==================
New user Wurst, Hans with IDN 3

Title: PSI scripts 26/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

=============== Record No.=3 ==================
New user Blaubär, Käpt'n with IDN 4
=============== Record No.=4 ==================
New user Sorglos, Susi with IDN 5
...

JOB 000035 RUN_PSI 2013/10/16 15:56:14 END

Example 2:

This serves to determine how many items are associated with subjects containing the word
"econom":

proc swtlink() {

 query = "FILE=SWT QUERY=SWT=econom*"
 printl ("Looking for... " + query)
 setno = find(query)
 results = getset(setno)
 ix = dim(results)
 os = sprintf ("Set-Number = %.f", setno) + sprintf (" (%.f Records)", ix)
 printl(os)
 x = 1
 while (x <= ix) {
 query = sprintf("SET=%.f", setno) + sprintf(" NUMBER=%.f", x)
 handle = getrec(query)
 if (handle < 0) {
 printl("Error reading record - Stop!")
 x = ix + 1
 } else {
 linkedset = get(query + " LINK=TIT")
 lres = getset(linkedset)
 ax = dim(lres)
 print(sprintf("%.f)", x) + getfld(handle, "800") + sprintf(" (%.f Title)",
ax))
 }
 freerec(handle)
 x = x + 1
 }
}

swtlink()

The output of our program into the job protocol is expected to look like:

JOB 000039 RUN_PSI 2013/10/16 16:21:24 START
2013/10/16 16:21:24 SCRIPT=example2.psi SAVE=Y

Looking for... FILE=SWT QUERY=SWT=econom*

Set-Number = 99 (9 Records)

Title: PSI scripts 27/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

1) economic calculation (1 title)
2) economic situation (1 title)
3) economic studies or (1 title)
4) economic computer science (1 title)
5) economic behavior (1 title)
6) economics (4 titles)
7) international Economic Policy (1 title)
8) economic policy (2 titles)
9) economic Theory (4 titles)
JOB 000039 RUN_PSI 10/16/2013 16:21:24 END

Title: PSI scripts 28/28
© ExLibris (Deutschland) GmbH Alephino Release 5.0 Last updated: 15/02/2017

	The PSI programming language
	PSI program syntax
	Explanation of the syntax description
	Variables in PSI
	Functions of the PSI library
	I / O to file
	Input / Output (console)
	Conversion functions
	Mathematical functions
	System functions
	String functions
	Time and date functions
	Alephino functions (database access)

	The format string
	Program creation
	Include mechanism
	Program start

	Programming Alephino database services
	Example 1:
	Example 2:

