
Primo
File Splitters

Barak Hecht
Primo Publishing Team Leader

Developing Enrichment Plug-ins:
◦ Enrichment

◦ Import Extensions

Barak Hecht
Primo Publishing Team Leader

Developing An Enrichment Plug-in

• Additional information that does not exist in
the source record can be added to harvested
records

• Enrichment allows modifications for each
record harvested during a pipe run

• Enrichment plug-in modifies existing PNX
records

Steps for Developing an Enrichment Plug-in

1. Extract the primo_publishing-api.jar from within the primo installation

directory. Location: $primo_dev/ng/primo/home/system/publish/client

2. Implement the EnrichmentPlugin interface

3. Wrap the plug-in in a jar file

4. Place the jar file under:

$primo_dev/ng/primo/home/profile/publish/publish/production/conf/enrichP

lugin/lib/

5. Edit the following XML file to include the wanted plug-in to be run:

$primo_dev/ng/primo/home/profile/publish/publish/production/conf/enrichPl

ugin/custom_enrich_tasks_list.xml

6. Edit the following parameter file if needed:

$primo_dev/ng/primo/home/profile/publish/publish/production/conf/enrichPl

ugin/plugin_parameters.txt

7. Enable “User Plug-in Enrichment” in the Back Office

2. Implement EnrichmentPlugin Interface

Interface:

public interface EnrichmentPlugIn {

public Document enrich(Document xmlDoc, Map parameters);

}

Implementation:

public class DemoEnrichmentPlugin implements EnrichmentPlugIn {

public Document enrich (Document xmlDoc, Map parameters) {

String title = getTitle(xmlDoc);

title = modifyTitle(title, parameters);

updateTitle(xmlDoc, title);

return xmlDoc;

}

}

enrich

3. Wrap the Plug-in in a Jar File

jar cvf demo_enrichment_plugin.jar DemoEnrichmentPlugin.class

Jar name

to be created

File to be included

in the jar

4. Place The Jar File

5. Edit XML File to Include the Plug-in

custom_enrich_tasks_list.xml

7. Configure Enrichment Sets in BO

Enable the “User Plug in Enrichment” for the
enrichment set configuration:

Bib Record Import Extensions

After a Bib Record is already loaded into the system, we might still want to

add additional information to be linked to this record.

Supported extension types:

• Tags (searchable & displayed)

• Popularity (sort by)

• TOC (searchable)

• Abstract (searchable)

• Fiction (searchable)

• Reviews (displayed)

Bib Record Import Extensions

The extension data is given by external organizations such as :

• Syndetics (TOC, Abstract, Fiction)

• LibraryThing (Tags, Reviews)

• …

This mechanism was designed in a way that enables programmers

to develop their own loading mechanism to support different sources

that provide such extensions.

Developing Import Extensions Plug-in

1. Extract the primo_publishing-api.jar from within the

primo installation directory

Location:
$primo_dev/ng/primo/home/system/publish/client/

2. Implement the PNXExtensionPlugin interface

3. Wrap the plug-in in a jar file

4. Place the jar file under:

$primo_dev/ng/primo/home/profile/publish/publish/pro
duction/conf/enrichIndexingPlugin/lib/

5. Add the plug-in to the “PNX Extension Sources”

mapping table

Interface:

public interface PNXExtensionPlugin {

void convert(String src, String dest) throws Exception;

}

Implementation:

public class DemoPNXExtensionPlugin implements PNXExtensionPlugin {

public void convert (String src, String dest) throws Exception {

File sourceFile = openFile(src);

File pnxImportFile = convertFile(sourceFile);

saveFile(pnxImportFile, dest);

}

}

2. Implement PNXExtensionPlugin Interface

Convert

5. Back Office Configuration

Adding Plug-in to PNX Extension Sources
Mapping Table

5. Back Office Configuration

Thank You!
traininghq@exlibrisgroup.com

