
Engagement at 

BaM universities 

cannot be reduced 

to VLE use.

Is engagement at 

BaMs still 

predictive of 

student success?



Measuring engagement

 Engagement has many dimensions...
• Physical attendance at lectures

• Interacting with staff

• Being on campus

• Student societies / sports / hobbies

• Using digital resources (e.g. VLE, library)

• Using external digital tools (e.g. social media)

• ...

 Many of these leave digital traces

 Pragmatic approach: Focus on digital data 
that is routinely collected. 
 (Working closely with data warehouse project and 

IT managers.)
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Data Source Includes data about Dates

Data warehouse • Modules exams results
• Students' Journey (incl. end of withdrawals, ending reason, transfers  etc.)
• Interruptions
• Enrollment, Registration, Programs, Modules variables
• Demographics
• WP rules
• Assessment Types & results
• Students entry qualification (TBD)

continuously updated 

Committee Interactions Memberships in committees and tickets' purchasing 2013-14-15

Guild
(Careers Events System)

Signups and attendance for career events 2013-14-15

Mitigations biosciences
(Manually curated)

Requests of mitigations and their status (only bioscience students) 2014-15-16

Systems' interactions Time stamped logins from ELE, MACE, Inter Library Loans (Library ILL), Library fees, Exam's archival system 12/10/2012 - 3/2/2016

iExeter Clicks on menu items & loading of pages Term2 2014 – Term1 2016

Recap Video views Term 1 2016

ELE Timestamps of all interactions with ELE from which we can calculate the usage per day (minutes, counts, active 
10 minute intervals)

7/2015 – 1/2016

Full logs, classified into resource type and activity type 8/2015 – 12/2016

Survey Offline interactions, digital interactions outside of the university’s systems, students' subjective perception of 
engagement and of their performance in learning, learning strategies

Term 2 2016

DLHE Self reported employability variables

BART Due and actual dates  of assignments, type of assignments  (paper / online)

SID SID calls, categorized 2013,14,15



Measuring engagement

 Which forms of engagement are useful?
 → need to be both measurable and predictive

 Focus on digital data may introduce bias
 → running a complementary engagement survey 

(results are being written up)

Measureable 
engagement Predictive 

engagement



Demographic Engagement

Gender [U = 231120953.50**] MACE evaluations [r = 0.250**]

Away from home [U= 152140073.00**] MACE logins [r = 0.262**]

Disability type [H(10) =168.02**]

Disability [H(3)=73.89**]

Country of domicile [H(140)=1,554.98**]

Ethnicity [H(18)=627.97**]

National identity [H(7)=360.69**]

Nationality [H(187)=1,880.03**]

Parents' occupation [H(326)=869.74**]

Statistics: r – Spearman's, U – Mann-Whitney, H – Kruskal-Wallis, ** - significant p<0.01

Sample: n=30,781 students in three years 2013-2015.

Kent, Boulton, Williams (2017) Towards Measurement of the Relationship between Student Engagement and 

Learning Outcomes at a Bricks-and-Mortar University. Proc. 2nd Cross-LAK Workshop at LAK 2017. 

Entire cohort – predictors of average credit-

weighted module grade



Data integration – Integrationing, normalising and cleaning data from multiple data sources to 

create as complete a picture as possible of an individual’s experience

Variables reduction – Reduce the dimension in variables for simplicity and to minimise 

multicollinearity

Cohort split – Cluster students by grouping them by engagement, demographics and study 

settings

Modelling – Model the outcome/success of each cluster
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Higher performance

Native English speakers

Younger

Early assessment submission

Less SID calls

Higher use of digital systems

Less career events attended

More student support

Less debts

Lower proportion of 1
st

gen into university

Lower performance

Non-native English speakers

Older

Later assessment submission

More SID calls

Lower use of digital systems

More career events attended

Less student support

More debts

Higer proportion of 1
st

gen into university



Engagement through ELE system is weakly predictive of module 

grades (with variation between disciplines).

Boulton, Kent, Williams (2018) Virtual learning environment engagement and learning 

outcomes at a ‘bricks-and-mortar’ university. Computers & Education 



Boulton, Kent, Williams (2018) Virtual learning environment engagement and learning 

outcomes at a ‘bricks-and-mortar’ university. Computers & Education 

OLR models

• Can use ordinal linear regression (OLR) models as predictors of result based on 

engagement.

• After classifying results into degree classification categories, model outputs a 

probability of being in each category.

• Very low chance of failing 

but this decreasing with 

VLE usage.

• Equal probability of other 

catergories with increase 

in getting a 1st with ELE 

usage.



Different relationships predicted for different courses. Highlights 

differences in importance.

Boulton, Kent, Williams (2018) Virtual learning environment engagement and learning 

outcomes at a ‘bricks-and-mortar’ university. Computers & Education 



• Use coefficients from last year’s models to predict this year’s outcomes.

• Useful prediction can be made after 5 weeks, at least identify students who could 

need intervention.

• Note that 10% of instances given a 10% of failing, do fail!

W
ee

k 
5

W
ee

k 
1

0

Using OLR models for real time prediction



Can we spot interrupting students before it happens?

Non-interrupting student Interrupting student


